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I. INTRODUCTION

Positive human-human interactions contribute to feelings of
happiness, security, and self-esteem [30, 16]. On the contrary,
negative or nonexistent relationships can lead to feelings of
social rejection, loneliness, and poorer physical health [20,
38]. Recent research in the Human-Robot Interaction (HRI)
community has begun to explore robots interacting with groups
of people [35, 34] and found that robots can influence people
beyond the reciprocal interaction between a person and a robot.
For example, robots can influence how people work [39], talk
[41], or connect with each other [33, 42, 6]. Therefore, we
coined the term interaction-shaping robotics to refer to robots
that shape interactions between other agents, e.g., people [12].
My research vision aims to advance autonomous social
robots that can interact with multiple people and adapt to
human-human dynamics to positively shape interactions be-
tween people. For example, a robot might use subtle gaze
behaviors to balance how much people participate in a group
discussion [9]. Therefore, my research has addressed both
computational approaches, e.g., reinforcement learning (RL),
and explored their effects on human-human dynamics, i.e., the
balance in participation, which we evaluated in user studies.
Thereby, I am focusing on computational approaches that
help the robot act in socially appropriate ways, i.e., avoiding
inappropriate or biased actions in inappropriate moments.
Relevant prior work has often taken a social psychology
approach to study robot behaviors that shape human-human
interactions. These works have demonstrated that robots can
improve conflict situations among adults [23] and children
[37]. They can enhance emotional support [6], foster the
expression of vulnerability [39], and support first contact
between strangers [33] or the process of inclusion among
adults [40]. Further, research has studied how robots shape
participation behavior [5, 41, 27]. Additional works explored
how to perceive groups and their dynamics [7], e.g., cohesion
[36], or dominance [31], and how to apply machine learning
techniques to other HRI applications. For example, imitation
learning was used for kinesthetic teaching of manipulation
skills [1, 26] or active listening behavior [22]. Other work
explored RL to personalize robot behavior [25, 24, 43, 32, 14],
increase engagement [21], or interact with bypassers [29].
The connection between the perception of group dynamics and
robot shaping behaviors, for example, through heuristics or
machine learning, remains largely unexplored. One prior work
addressing this connection perceives the amount of speech in

Fig. 1. Two examples of robots interacting in groups while perceiving
and acting on the current group dynamics. Cozmo is fostering inclusion and
collaboration through perceiving participation in the game (top). Using audio
data, the robot Furhat utilizes gaze to encourage equal participation (bottom).

a discussion and uses a microphone-shaped robot to encourage
the least active participant by turning toward them [41].
My contributions address this gap between the perception
of group dynamics and interaction-shaping robot behaviors by
exploring (1) how handcrafted behavior heuristics that perceive
human-human dynamics can shape human-human interactions
and (2) how machine learning techniques that reduce the need
for handcrafting can be applied while ensuring that robot
behaviors remain appropriate.

II. FROM HANDCRAFTING TO LEARNING BEHAVIORS

Fostering inclusion and collaboration: We studied whether
a robot could help the inclusion of children that newly ar-
rived in a country [8]. We developed an interactive music-
mixing game played by a group of three children, which was
mediated by the robot (see Figure 1-top) In this work, we
approximated the group dynamics among children through
their participation behaviors in the game. Using camera-based
tracking of tangible game elements, the robot could collect
these participation behaviors to actively prompt the least active
child to take action in the game. In a control condition, the
robot did not perceive the group dynamics and randomly chose
which child to prompt. The analysis of children’s interactions
indicated that the robot could perceive the group’s dynamic.
Moreover, the robot could encourage newly arrived children
to play more outgoing, and increase collaboration between the
other children even beyond the interaction with the robot. In
addition, already present children tended to be more prosocial
when giving away stickers in a mini-dictator game [44, 15].
However, the robot’s behavior and perception of the group
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Fig. 2. Unevenness in participation for two handcrafted robot behaviors
on the right (N=27 groups, DG: dynamic gaze, SF: speaker-follower) and
gaze behaviors trained through RL or IL on the left (N=24 groups, RL:
Reinforcement Learning, IL: Imitation Learning). ↓: Lower values are better.

dynamics were purposefully engineered and can only be used
in comparable scenarios.
Balancing participation through gaze: We further explored
suitable non-verbal behaviors that could balance participation
in skill-imbalanced groups [9] to overcome the limitation of
game-specific robot behavior and perception. In the second
scenario we developed (see Figure 1-bottom), we used a
human-focused approximation of group dynamics by collect-
ing voice activation shares of the group members (collected
automatically through individual close-talk microphones) to
dynamically adjust handcrafted gaze patterns. To ensure a skill
imbalance in the group, we paired language learners and native
speakers to form a group with the fully autonomous robot. We
used a skill-focused game in which participants describe words
and the robot takes the unique role of guessing the words. We
show that the adjusting and dynamic gaze behavior (DG), as
opposed to a speaker-following (SF) gaze behavior, can lead
to balanced participation. Figure 2 shows how the measure of
unevenness in participation resulted in lower values, meaning
more even participation in the DG condition.
Learning behavior policies for balancing participation:
We formulated the problem of balancing participation through
gaze as a Markov Decision Process (MDP) to be solved
through imitation learning (IL) and RL [11]. The goal was
to train adjusting and flexible gaze policies, overcoming the
need for handcrafting robot behavior as done in previous
work. We trained a gaze policy π : st 7→ at that uses raw
audio features (e.g. MFCC, pitch, ...) of participants as the
state and the gaze options ’Look at speaker’, ´’Look at
other’, ’Gaze aversion’ and ’Do nothing’ as the actions. For
the policy πRL, we computed the reward to be proportional
to the balance of speech. Due to its potential to outperform
behaviors from the dataset, we used offline RL in the form
of Double Deep Q-learning [17] based on the data collected
through the gaze heuristics in prior work for training.
In a user study, we compared the policy πRL to the policy
πIL trained through IL, i.e., behavior cloning. For behavioral
cloning, we used the same dataset with the actions that the
heuristics chose as the ground truth. None of the behavior
policies improved over the heuristics regarding the unevenness
in participation as visualized in Figure 2. However, the user
study showed promise for learning gaze behaviors for interact-

ing in groups as interactions were not compromised. We were
the first to formulate the task of shaping group interactions
as an RL problem and showed that offline methods, which
allow for evaluating the policy before deployment, can serve
to overcome the limitations of handcrafting while ensuring
socially appropriate behaviors.

III. ONGOING & FUTURE WORK

GNNs to Model Human-Human Dynamics: The MDP in
our prior work above still has handcrafted elements, such as
specific ’Look at’ actions encoding the addressees (speaker,
other). Due to their ability to explicitly reason on the interac-
tions between people, we aim to use Graph Neural Networks
(GNNs) [13, 4] where humans are represented as nodes and
their interactions as edges to choose who the robot should
address through node-level prediction. In preliminary work, we
explored choosing the addressee of the robot’s action through
behavioral cloning and compared the use of linear models
and GNNs [10]. Given the complexity of the human-human
dynamics, the F1 score was low for both approaches. However,
the experiments showed that the GNNs outperformed the
linear models while being smaller in network size. My future
work will deepen the study of GNNs for modeling human-
human dynamics of groups of varying sizes. With the goal
of balancing participation, we will explore how to combine
addressee selection and multimodal actions through GNNs and
template-based action spaces [18].
SafeRL for Socially Appropriate Exploration: In previous
work, we showed that offline methods allow for ensuring
socially appropriate behavior. However, these methods always
require a dataset to be used for training. Therefore, we are
exploring shielding [2] to allow only ”safe”, i.e., socially
appropriate behaviors. We decided to focus on one-on-one
interactions to reduce the complexity of the problem and
attentive listening in the form of backchanneling. We use a
conversational dataset [3] in combination with the concept
of backchanneling relevant spaces [19] to explore if a data-
driven approach to shielding could generate a shield that
limits a randomly exploring RL agent to backchannel only
in appropriate moments. This work will lay the foundation
for investigating how other types of appropriateness relating
to action types or addressees could allow for exploring and
learning more complex robot behavior online.
Bias in robot behavior: While striving for less handcrafting
of robot behavior, we risk overlooking biases in human be-
havior that we captured in datasets, e.g., resulting in different
robot behavior toward men and women [28]. Therefore, one
goal of my future work is to further explore the risk of copying
human biases into robot behavior and find strategies to mitigate
those risks. For example, we could leverage methods from
previous work, such as offline learning techniques, to evaluate
the robot’s behavior before deployment or explore if we can
generate shields that lead to appropriate behavior and avoid
developing biases. A combination of these methods might be
necessary to ensure that robot behaviors remain unbiased.
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[15] Berna Güroglu, Wouter van den Bos, and Eveline A.
Crone. Sharing and giving across adolescence: An ex-
perimental study examining the development of prosocial
behavior. Frontiers in Psychology, 5(APR):1–13, 2014.

[16] Michelle A Harris and Ulrich Orth. The link between
self-esteem and social relationships: A meta-analysis of
longitudinal studies. Journal of personality and social
psychology, 119(6):1459, 2020.

[17] Hado van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, page 2094–2100. AAAI Press,
2016.

[18] Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. Interactive Fiction
Games: A Colossal Adventure. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):7903–7910,
Apr. 2020.

[19] Mattias Heldner, Anna Hjalmarsson, and Jens Edlund.
Backchannel relevance spaces. In Nordic Prosody XI,
Tartu, Estonia, 15-17 August, 2012, pages 137–146. Peter
Lang Publishing Group, 2013.

[20] Julianne Holt-Lunstad. Why social relationships are
important for physical health: A systems approach to
understanding and modifying risk and protection. Annual
review of psychology, 69:437–458, 2018.

[21] Nusrah Hussain, Engin Erzin, T. Metin Sezgin, and Yücel
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