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ABSTRACT
With societies growing more and more conscious of human social
biases that are implicit in most of our interactions, the development
of automated robot social behavior is failing to address these issues
as more than just an afterthought. In the present work, we describe
how we unintentionally implemented robot listener behavior that
was biased toward the gender of the participants, while following
typical design procedures in the field. In a post-hoc analysis of data
collected in a between-subject user study (n=60), we find that both a
rule-based and a deep learning-based listener behavior models pro-
duced a higher number of backchannels (listener feedback, through
nodding or vocal utterances) if the participant identified as a male.
We investigate the cause of this bias in both models and discuss
the implications of our findings. Further, we provide approaches
that may be taken to address the issue of algorithmic fairness, and
preventative measures to avoid the development of biased social
robot behavior.

CCS CONCEPTS
•Computer systems organization→Robotics; •Human-centered
computing → Empirical studies in collaborative and social comput-
ing; User studies; • Computing methodologies → Supervised
learning.

KEYWORDS
ethical HRI, AI fairness, gender bias, machine learning, non-verbal
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1 INTRODUCTION
One goal of the Human-Robot Interaction (HRI) community is to
explore how we can create social behaviors for our social robots
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Figure 1: Overview of the experimental set-up in Parreira
et al. [41]. Participants were invited to think aloud while
completing tasks on the tablet. In this work, we examine the
conditions in which participants directed their words to a
robot. The robot was performing listening behavior in the
form of backchanneling, either following a heuristic (NaïveL)
or learned (DataL) behavior model.

that benefit the interaction between humans and robots. For exam-
ple, the field has suggested techniques to automatically generate
a robot’s gaze [15, 16], empathetic behavior [40], or backchannels
[21, 53]. These techniques often propose a set of rules to form a
heuristic [38, 52] or learning techniques that are trained on data
from human-human interactions [13, 36].

Pioneering work by Buolamwini and Gebru [6] has shown that
datasets can be a source of bias in machine learning methods. These
biases reflect a variety of biases present in society, namely skin color
in combination with gender [6], gender in recruiting tools [9], and
race when predicting the likelihood of future crimes [1]. Recently,
the HRI community started to explore the effect of biased robots and
found that even seemingly obvious and objectively biased behavior
goes unquestioned, with unfair outcomes instead being post-hoc
rationalised in a way that reflects (gender) stereotypes [20].

Here, we discuss how pursuing a very typical, data-driven ap-
proach to the development of a robot listener behavior (production
of backchannels, which can serve to indicate attentiveness) resulted
in models that acted differently with participants with different
gender identities. In a between-subject study [41], we explored two
different methods to predict when to emit backchannels: a com-
monly used heuristic [53] and a deep learning model trained on
human-human conversational data. On running these models on-
line in the user study, we (authors 1 and 2) independently observed
that the robot appeared to be behaving differently across female and
male participants. Post-hoc analysis subsequently confirmed that
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both approaches produced more backchannels when the speaker
was male. It is easy to imagine observant bystanders perceiving
the robot as hence being more attentive to men than to women –
which would not be an isolated case, given ongoing gender dispari-
ties in digital skills development [54], inclusion within computing
and robotics [50, 55] and criticism of social robots/virtual agents
propagating harmful gender stereotypes [51, 54, 56].

In the present work, we describe and reflect on our system design
process in order to provide insight into the potential pitfalls when
developing social behaviors for robots. We analyze the robot’s
behavior in conjunction with key features from the dataset and our
participant pools, in order to understand why this bias emerged.
Finally, we contribute with a set of design preventative measures
that researchers may take into account when adopting data-driven
approaches to the generation of robot behavior, in order to avoid
repeating our mistake and deploying unfair, biased robot social
behavior.

2 BACKGROUND
The emergence of biases in social behavior models is a multidis-
ciplinary phenomenon, which ought to be contextualized. Below,
we shed light on human-human listening behavior, approaches to
automatize this behavior in artificial agents, and why our findings
are not an isolated issue.

2.1 Backchannels in human-human
interactions

Backchannels (BCs) are short vocal or non-vocal expressions of
a listener that are not meant to interrupt the turn of the current
speaker [17]. They play an important conversational role, by sig-
naling attentiveness or emotion to a speaker. Backchanneling has
also been found to impact the perceived personality and rapport
building [5, 23]. While BC behavior has been shown to be corre-
lated with the personality of the listener [22], evidence indicates
that the gender identities of the speaker and listener also play a
role. A substantial number of studies reports that participants iden-
tifying as female backchannel more than participants identifying
as male [4, 45, 46], and female-identifying speakers generally re-
ceive the most backchannels [4]. Adjacent factors such as status or
dominance also influence the amount of backchanneling [33, 45]. In-
terestingly, Mulac et al. [35] found that female and male observers
might interpret the function of backchannels in different ways.
Females tended to associate backchannels with interest, whereas
males interpreted them as a sign of uncertainty.

The literature described above highlights the role of BCs and in-
dicates that the speaker’s gender identity may impact the backchan-
neling that occurs in a conversation; also given its impact on the
perception of the interaction, we should carefully observe differ-
ences in BC behavior when executed on a social robot. We further
discuss these implications in Section 4.

2.2 Listener Behavior in HRI
Prior work explored multiple approaches to the development of
listening behavior in robots. Rule-based methods are common and
predict backchannel behavior by monitoring the speaker’s prosodic

features, e.g., the pitch [38, 52, 53]. However, hand-crafted heuris-
tics can be limited, which is why other authors adopt automated
learning methods [13, 27]. For example, Okato et al. [39] designed a
Hidden Markov Model (HMM) based on prosodic patterns to detect
when to emit a BC. Morency et al. [32] also used a HMM with
multimodal (audiovisual) input features to predict BC timing.

More recently, the development of listener behavior has been
making use of deep learning techniques. A common architecture
is Recurrent Neural Networks (RNNs), as they capture the tempo-
ral dependencies of continuous signals (i.e., retain ”memory” of
previous inputs). Long-Short Term Memory (LSTM) and Gated Re-
current Unit (GRU) layers, in multimodal input models (acoustic
features, video features, or word history) have been leveraged for
the development of idle behavior in virtual agents or robots [21, 48].
In addition to implementing a listener model using LSTMs, Murray
et al. [36] also suggested a method for data augmentation that posi-
tively impacts BC prediction. RNNs have also been used to inform
turn-taking behavior [19, 44]. Other interesting approaches include
the use of such as semi-supervised learning [26], or reinforcement
learning [25, 47].

2.3 Bias and Critical Reflection in HRI and
Related Fields

Buolamwini and Gebru’s Gender Shades project [6] drew major
attention to the existence of bias within facial recognition systems
– a key ’building block’ designed to underpin human-machine inter-
actions. Their work pointed, in part, to non-diverse and/or biased
datasets as being one major cause of biased algorithms more gen-
erally. Other notable examples include, e.g. ”gender recognition”
systems that seemingly identify the gender of a person based on
their surroundings (kitchens and handbags being synonymous with
women, skateboards and surfboards with men) [31]. Buolamwini’s
subsequent work with the Algorithmic Justice League1 aims to cre-
ate ’cultural movement towards equitable and accountable AI’.

A number of authors spanning science and technology studies,
human-computer interaction and social sciences have made similar
calls for change. For example, Strengers and Kennedy [51] call for
a ’feminist reboot’ of assistive technologies (including robots) to
ensure more ethical designs which challenge, rather than propagate,
harmful gender norms and stereotypes. Ruth Benjamin[3] identifies
a need for ’sociologically informed skepticism’ when examining
new technologies, based on her study of AI-powered technologies
as the New Jim Code – hiding and even speeding up discrimination
under the veil of machine neutrality.

Perhaps driven in part by these calls, recent works within HRI
have provided critical reflections on how research is conducted,
aiming to make explicit any assumptions and potential biases ad-
jacent to the robots/interactions we’re developing. For example,
concerning data diversity, Winkle et al. [55] recently reviewed
gender diversity in HRI research participation to date, finding an
over-representation of men and an under-representation of women
(moderate) and non-binary persons (very large). Works on (gen-
dered) robot design/perception have probed the ways in which
gender stereotypes, combined with a potential lack of diversity
in research/design teams, might be manifesting in current robot

1https://www.ajl.org/

https://www.ajl.org/
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Figure 2: Backchanneling behavior over time from the data-
driven model (DataL, in green) or heuristic model (NaïveL, in
purple). The different types of BCs emitted are discriminated.
Data shown is averaged over all participants in that condition.
Top - LogicQ task; bottom - NASA task.

design and applications [14, 42, 56]. Concerning the potential im-
pacts of biased robot behavior, work by Hitron et al. [20] found that
participants failed to recognize gender bias in a robot moderating a
debate, instead explaining its unfair behavior through arguments
that propagate gender stereotypes. This finding particularly moti-
vates our current work, as it demonstrates just how easily biased
behavior can go unnoticed.

3 GENDER BIAS IN LISTENER MODELS
This paper focuses on a post-hoc realization of robot behavior biases
during a user study. As such, we provide only an overview of the
study and model implementation. A more detailed description is
provided in Section 6.

3.1 User Study
In Parreira et al. [41], we set to explore how a social robot could
improve a rubber duck debugging session. This concept, which orig-
inated from a story in the book The Pragmatic Programmer [24],
encompasses the idea that a rubber duck can assist the process
of ”debugging” a program by serving as a listener when a person
explains the code aloud step-by-step. We wanted to evaluate the ef-
fects of replacing the rubber duck, an unresponsive listener, with an
attentive listener robot, in a Think-Aloud Problem-Solving (TAPS)
[29] session.

In a between-subject study with three conditions, we evaluated
how two different robot listening behaviors and an inanimate object

NaïveL DataL NaïveL DataL
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Figure 3: Participants’ rating of the robot’s listening behavior
and closeness to the robot (from Murray et al. [36]).

- a rubber duck - affect the outcome and perception of two distinct
think-aloud problem-solving tasks, a deductive logic quiz (LogicQ
task) and an open-ended question (NASA task). The setup can be
seen in Figure 1. We used a Furhat robot2 with the William voice
from CereProc3, including its backchannel sounds.

3.1.1 With-robot Conditions. This study utilized two different lis-
tener behaviors. In the Naïve Listener Robot (NaïveL) condition,
the social robot displayed listening behavior generated by hand-
crafted heuristics. Conversely, in the Data-driven Listener Robot
(DataL) condition the social robot displayed listening behavior that
was learned through machine learning methods using a human-
human conversational corpus.

3.2 Listener Behavior Implementation
The listener behavior implemented consisted of the robot’s gaze
and backchanneling (vocal and/or non-vocal, in the form of nod-
ding). In the present work, we focused solely on the analysis of
the backchanneling behavior produced, whose implementation we
describe below.

3.2.1 Rule-based Model. The NaïveL condition made use of the
implementation of a well-known heuristic developed by Ward and
Tsukahara [53]. This impactful work made use of corpora of English
and Japanese human conversation data and suggests a set of rules
for each language that determine the appropriate time to emit a
backchannel. The heuristic is based on prosodic cues, i.e., pitch. The
first two rules are the most influential as indicators for backchannel
opportunities: (1) the pitch has to fall below the 26th percentile
of the overall pitch distribution and (2) continue in this region for
at least 110ms. We reproduce the full set of rules and give further
implementation details in Section 6.1.

3.2.2 Data-Driven Model. In addition to a rule-based model, we
also deployed a deep learning listenermodel which learned backchan-
neling behavior from a corpus of human-human conversational data.
Themodel is split into two models: BC timing (when to backchannel)
and BC type (which type of BC to emit - vocal or non-vocal (nod)).
We give a brief overview of the deep learning listener model here

2https://furhatrobotics.com/
3https://cereproc.com/
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Figure 4: Backchanneling behavior over time from the rule-
based model (NaïveL) across genders (male - blue, female -
red). The different types of BCs emitted are discriminated.
Data shown is averaged over all participants in that condition.
Top - LogicQ task; bottom - NASA task.

and refer the reader to Section 6.2 for a full problem and model
description as well as training procedure and performance.

The model was built on a subset of the Cardiff’s Conversation
Database (CCDb)[2]. For training, we selected eight of 30 conversa-
tions based on the thoroughness of annotation. From these eight
conversations, we extracted the states and actions for the deep
learning model. The states were formed by a 34-item feature vector
extracted at 2Hz from the audio data, comprising of mel-frequency
cepstrum coefficients (MFCC) and prosody features. The deep learn-
ing model takes this feature vector as input to generate a backchan-
nel action as an output. The robot could perform the same actions
as those performed by the NaïveL robot (Sec. 6.1) - vocal utterance,
nod of varying amplitude, or a simultaneous combination of both.

3.3 Observed Backchanneling Behavior
To evaluate what behavior the models generated and how it was
perceived by participants, we looked into how the robot acted
and how it was perceived in the NaïveL and DataL conditions. We
provide the data and R markdown files used for the analysis4.

3.3.1 Participants. In Parreira et al. [41], a total of 101 participants
were recruited through posters, flyers, social media platforms, and
word of mouth. Ages ranged from 19-76 years (M = 26.4, SD =
7.6). 53 participants identified as male and 48 as female, with a
total of twenty-nine different nationalities. Each condition where
the robot was present had the following participant demographics:
4https://github.com/mteresaparreira/gender-biased-robot-duck
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Figure 5: Backchanneling behavior over time from the data-
driven (DataL) across genders (male - blue, female - red).
The different types of BCs emitted are discriminated. Data
shown is averaged over all participants in that condition. Top
- LogicQ task; bottom - NASA task.

#08E4! − # = 29 (9�, 20"), ages 26.3 ± 7.4; �0C0! − # = 31
(18�, 13"), ages 25.3 ± 5.3.

3.3.2 Robot Behavior. To understand how the robot acted during
the interactions, we analyzed the log files from each interaction.
We defined Backchannel Frequency per minute as the total
BCs executed by the robot every 60 seconds, calculated as a slid-
ing window with hop length of 15B . Figure 2 shows the average
backchannel frequency across time for each task. The NaïveL robot
displayed similar values for vocal and non-vocal backchanneling,
but the frequency decreased as task time increased.TheDataL robot,
on the other hand, favors non-vocal backchannels (nodding), which
is displayed in much higher frequency, as well as a combination of
both nodding and vocal utterances.

3.3.3 User Reporting of Robot Behavior. The participants in con-
ditions where the robot was present (NaïveL, DataL) were asked
to evaluate the robot in the post-experiment questionnaire. They
rated the robot’s Listening behavior and Closeness [36], as well
as Social attributes (from RoSAS [8]).

A one-way ANOVA showed no significant differences between
conditions for both the Closeness and Listening behavior dimen-
sions of robot behavior [36] (� (1, 58) = 2.07, ? = 0.16 and � (1, 58) =
0.56, ? = 0.46, respectively). Fig. 3 illustrates these findings. An anal-
ysis of the social attributes [8] also did not reveal a significant differ-
ence between the NaiveL and DataL conditions (one-way ANOVA
for the Competence dimension, � (1, 58) = 0.46, ? = 0.50, and
Wilcoxon rank sum test for the Warmth,, = 543.5, ? = 0.10 and

https://github.com/mteresaparreira/gender-biased-robot-duck
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Figure 6: Low pitch cue is different across genders. Left: ratio
of audio samples under the 26th percentile level. Right: aver-
age sequential time below that level (in units of computation,
approximately 10 ms/unit).

Discomfort,, = 410, ? = 0.55, dimensions, after a Shapiro–Wilk
test of normality revealed these variables did not have normal dis-
tributions, ? < 0.05).

3.3.4 Different Backchannel Frequency for Different Genders… When
deploying the models online, in the user study, the robot appeared
to behave dissimilarly when the participant identified as male or
female. In the NaïveL condition, researchers running the experi-
ment noticed the frequency of backchannels emitted appeared to
increase with male participants. Indeed, when breaking Fig. 2 by
gender, we can observe that, for both the rule-based model (Fig. 4)
and the data-driven model (Fig. 5), the robot displayed higher levels
of BC feedback.

We evaluated the effect of Gender on BC Frequency with an
ANCOVA, after controlling for Speech-to-silence ratio (for each
participant and task, time spent speaking over time spent silent).

NaïveL. Gender was a significant predictor of BC Frequency,
� (1, 28) = 13.37, ? = 0.001.

DataL. Genderwas also a significant predictor ofBCFrequency,
� (1, 30) = 7.58, ? = 0.01, as well as Speech-to-silence ratio, � (1, 30) =
63.07, ? = 0.008.

3.3.5 … But Participant Perception Did Not Change. Following the
results in Section 3.3.4, we investigated if these differences in be-
havior reflected in differences in how users evaluated the robot.
For each measure - Listening Behavior, Closeness, Warmth,
Competence, Discomfort-, we ran an ANCOVA to evaluate the
effect of Gender, controlling for BC Frequency.

For both robot behaviors, we found no significant effects of Gen-
der or BC Frequency on any of the above-mentioned measures.

3.4 Debugging Robot Behavioral Differences
3.4.1 When Rules Don’t Apply. Ward and Tsukahara [53] defined
a set of rules (Section 6.1) based on three main components: partici-
pant’s voice pitch, voice activation detection (VAD), and time since
the last backchannel was emitted. The distribution of voice pitches
is different across sexes [30]; thus we identified the calculation
of the 26th-percentile pitch level as being one possible source for
differing robot behaviors across gender.

We investigated this hypothesis by extracting the pitch and 26th
percentile value for the two tasks of 22 participants (6F, 16M, other
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Figure 7: Principal components that explain the most vari-
ance (56%) in the state space, by gender.

audio recordings were corrupted). As detailed in Section 6.1, the
pitch is updated with the last 10 ms of audio. This instantaneous
pitch value is compared to the 26th-percentile level (rule P1). We
investigated the percentage of pitch values that fell below this
level per participant (LowPitch) and examined if it differed by
gender (Fig. 6, left). Additionally, as per rule P2, we investigated
the average duration the pitch stayed below the 26th percentile
(LowPitchDuration, Fig.6, right). The percentile is calculated over
the last 50 s of audio, and thus its value is not fixed - hence why
we see values for LowPitch which are above or below 26%.

For both rules, male participants trigger more positive oppor-
tunities for backchanneling (Wilcoxon rank sum test, LowPitch
-, = 11, ? < 0.01, LowPitchDuration -, = 20, ? = 0.04, after
a Shapiro–Wilk test of normality revealed these variables did not
have normal distributions, ? < 0.05).

3.4.2 State Space Also Differs. As described in Section 6.2, the
data-driven model takes as input a 34-dimension prosody feature
vector, extracted from the audio of the participants. In order to
investigate what could be causing the differences in the DataL
robot behavior, we extracted the input feature vectors across time
for all participants in this condition (18F, 13M). To best observe the
differences between genders in the state space, we ran a Principal
Component Analysis (PCA), which allows us to perform dimension
reduction. Fig. 7 shows the two principal components which explain
56% of variance. While there is some overlap, features from female
participants appear less dispersed. A one-way ANOVA shows a
main effect of Gender for the distribution of values from the first
two principal components (PC1: � = 2869.3, ? < 0.001, PC2: � =

5254.9, ? < 0.001).

3.4.3 Is it all in the dataset?

NaïveL. For the extraction of the rules, Ward and Tsukahara [53]
use a corpus of 68 minutes of dyadic conversations in English, with
a total of 12 speakers. Gender diversity amongst the 12 speakers is
low, made up of 10 male and 2 female speakers.

DataL. To train a deep learning listener model that could ad-
just to different user tasks, we looked for corpora of unscripted,
non-topic-bounded interactions that were publicly available. We
used Cardiff’s Conversation Database (CCDb)[2], which has ap-
proximately 150 minutes of dyadic conversations. The thirty con-
versations occurred between 16 different speakers (12 M, 4 F). For
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training and offline testing, we selected the subset of 8 conversations
annotated for facial expressions and utterances. These interactions
took place among 6 speakers - all male participants.

4 DISCUSSION
In this section, we discuss our findings and leave suggestions for
measures to avoid replicating the deployment of unfair robot social
behavior models.

4.1 Biased Backchanneling
In Ward and Tsukahara [53], the authors provide a discussion of
the rationale and limitations of the performance measures used to
evaluate their rule-based model, as well as the challenge of accu-
rately predicting backchanneling behaviors given how dynamic
social valence and rapport are during an interaction. They advance
hypotheses about the communicative functions of the low pitch
regions as defined by rules P1 and P2, namely that the speaker
considers they have transmitted information. However, as per the
data collected in our previous study [41], male speakers produce
these cues more frequently (Fig. 6), leading to a more responsive
listening behavior for men than for women. Note that speech-to-
silence ratio was not deemed a predictor of the frequency of BCs
emitted (Section 3.3.4), which means that the observed differences
in listening behavior are not due to higher speaking engagement on
the part of male participants. In spite of the author’s thorough work
and analyses, a lack of gender diversity within their participant
poll may be one reason why this aspect was missed.

For the DataL condition, we note that, in spite of the principal
component distributions observed, speech-to-silence ratio was also
a predictor of the robot backchanneling behavior. This may be a
good indication that this model’s output was informed by other
important aspects of the interaction.

Both the models deployed were biased towards the overproduc-
tion of BCs in a conversation if the speaker was a male. Interest-
ingly, this is contrary to what can be observed in human-human
conversation, as female-identifying participants tend to receive
more backchannels [4]. This reveals that the bias is not a reflection
of sociological biases, but rather emerges from the methods and
models used in this study.

Nature and Availability of Human-Human Conversational
Data. The collection of conversational data is frequently the first
step to developing listening behaviors. Some interesting corpora
of dyadic interactions in English include CCDb [2], IEMOCAP [7]
and D64 [37], among others [49]. We were looking for unscripted,
non-topic-bounded interactions that were publicly available. Not
many corpora exist that fulfill these criteria, and even fewer datasets
are mindful of gender balance among participants. We highlight
IEMOCAP[7], which collected data from 5F, 5M actors. The litera-
ture on the development of artificial listener behavior is, however,
abundant in examples of gender imbalance within the participant
pool. For example, de Kok et al. [13] (3F, 29M), Poppe et al. [43] (4F,
16M), Morency et al. [32] (67F, 37M), Okato et al. [39] (0F, 22M),
Murray et al. [36] (9M, 3F). Other works don’t disclose gender (e.g.
Kawahara et al. [27]). In order to foster robustness of robot social

behavior models, more attention needs to be given to gender distri-
bution and potentially other demographic and social factors when
recruiting participants.

4.2 We Built a Biased Robot
The present work focuses on a post-hoc exploration of the causes of
a bias in robot social behavior. Backchanneling behavior in a casual
social interaction with a healthy, neurotypical adult population may
not seem like a high-stakes setting for biases, but even within this
context, a posteriori identification of biases has potentially devas-
tating consequences. Pitch cues are a source of gender stereotyping
[28], and women tend to recall non-verbal behavior more than men
[18]. Failure to recognize this bias by participants (gender was not a
predictor of how the robot was evaluated) was not surprising, as it
has been observed before [20]. Rather, it identifies the risk of biased
behaviors going unnoticed/unquestioned, not only by participants
but also by researchers, who might look at such lack of difference
as evidence that the robot ’worked equally well for everyone’.

Our own failure to prevent these biases came as an unpleasant
surprise and made us wonder what could have been done differ-
ently. The observed differences in robot behavior are without a
doubt unacceptable, but it remains unclear how the robot should
behave instead. We see three contrasting approaches that can be
taken to develop (hopefully) more ”fair” data-driven robot social be-
haviors: a) reproducing the differences observed in human-human
interactions, b) attempting to treat users of all gender identities
exactly equally, or c) applying the concept of algorithmic reparation
[10] to overcompensate for those differences observed in human-
human interactions. Below, we will discuss each point separately.
We would like to note that, in all cases, potential differences in
perception of social behaviors as discussed in Section 2.1 need to
be considered.

Reproducing observed differences In Section 2.1 we discuss ob-
servations on backchanneling behavior as perceived from and
produced by male-identifying and female-identifying conversa-
tion partners. Additionally, while some works discuss that male-
identifying conversation partners might use backchannel behavior
to exhibit control [35], the literature remains undecided if the given
experimental data allows for such a conclusion. Future work should
therefore be aware of the discussion on societal biases even in seem-
ingly small social behaviors when developing these. Further, future
work needs to address if robots with different gender identities
might raise different expectations in users given the differences in
producing backchannels based on gender identity.
Equal treatment Future work should also explore the feasibility
of equal treatment across genders. We note, however, that this
implies the robot will violate expectations of gender norms through
its executed behavior, since there are implicit gender biases in
human-human interactions (e.g., different backchanneling behavior
in males and females [4]).
Overcompensation Recently, Davis et al. [10] suggest the para-
digm of algorithmic reparation, which calls for overcompensation
in case of historical injustice. For example, given that fewer women
were hired for tech sectors, more women than men must be hired
in the future to overcompensate for previous injustice. Future work
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will need to understand to what extent social behaviors in conver-
sations can offer a possible place to overcompensate for societal
biases in these interactions.

4.2.1 Preventative Measures. With the above discussion and our
findings in mind, we suggest specific design guidelines that may be
applied to avoid embedding gender biases into robot social behavior:
(1) Carefully examining the dataset and considering reducing or

recollecting the data to form a pool of gender-diverse partici-
pants.

(2) Testing developed behaviors online and offline whilst
• being sensitive to pilot testers (and observing researcher)

impressions of the robot’s behaviors across people of dif-
ferent identities – here we have explored only gender, but
such work requires an intersectional approach;

• quantifying behavior by running pilot studies or performing
offline evaluations on a dataset to objectively observe the
robot’s behavior towards participants with different (gender)
identities;

• building on the above, avoiding overreliance on perceptual
measures regarding robot behavior only – make sure to
compare and contrast objective measures of robot behavior
to identify differences which may not register during user
studies.

(3) Being aware of the three different approaches we discuss above
that might help to overcome concerns about differences in
robot behaviors. We suggest that these considerations are dis-
cussed when reporting studies that examine the development
of social behaviors on robots.

5 CONCLUSION
The present work describes how we unintentionally developed
and deployed gender-biased robot backchanneling behavior. We
provide some insights into potential causes - namely, the reductive
nature of the use of low-pitch regions as cues for backchanneling,
or gender imbalance in the data corpus used for training a deep
learning model. Nonetheless, we followed commonly used design
protocols for the development of robot social behavior and failed to
prevent these biases, which calls for a reflection on these protocols.
We discuss potential courses of action that can be taken to address
the issue of AI fairness, in a way that is by no means extensive but
provides a starting ground for better practices. Especially in the HRI
community, where the embodiment of agents adds another layer
of social expectations within interactions, these considerations are
important points of discussion as we attempt to co-design a more
just future for all.

6 STUDY DESIGN AND IMPLEMENTATION
DETAILS

Below, we provide a more complete description of the user study
and model implementation. A full description of the motivation
and results can be seen in Parreira et al. [41].

6.1 Rule-based Model
The NaïveL condition is based on the heuristic developed by Ward
and Tsukahara [53]. This work suggests a set of rules based on

prosodic cues, i.e., pitch. We reproduce the rules below. If all the 5
conditions are met, a BC should be generated:
(P1) a region of pitch less than the 26th-percentile pitch level and
(P2) continuing for at least 110 milliseconds,
(P3) coming after at least 700 milliseconds of speech,
(P4) providing you have not output backchannel feedback within

the preceding 800 milliseconds,
(P5) after 700 milliseconds wait.

In our study, we calculated the pitch distribution of the partici-
pant’s voice using the YIN estimator [11] over the last 50 s of audio,
upon which the percentile level was calculated. Pitch was updated
every 10 ms. Backchannel type (non-vocal or vocal) was randomly
selected when the five conditions shown above were met. For vocal
utterances, the specific sound was selected randomly from a set of
pre-defined utterances (e.g., ’hmm’, ’ahh’). The non-vocal backchan-
nel was realized through a head nod. The ”amplitude” - range of
the up and down movement - of the nod was randomly sampled
from a uniform distribution. During the nod, the robot paused at
the lowest point for 0.5 s.

6.2 Data-Driven Model
In this section, we describe the process of implementing and train-
ing a deep learning model for backchanneling behavior. Offline
performance metrics are provided.

6.2.1 Problem Formulation. The generation of backchanneling in
a TAPS session was formulated as a sequential decision-making
problem. At any time step C , the environment (user’s voice features)
is captured as a state variable BC ∈ ( . The robot takes actions 0C ∈ �.
The model is divided into two sequential modules, timing and type
of backchannel. It first chooses between a binary output: performing
BC or doing nothing. If performing BC, BC is again used to decide the
type of BC to perform. The potential actions 0C are vocal BC (vocal
utterance), non-vocal BC (nodding), or both.
Dataset: In order to train the model on human-human conversa-
tional data, we looked for unscripted, non-topic-bounded interac-
tions that were publicly available. As per these criteria, the dataset
used for training was Cardiff’s Conversation Database (CCDb)[2].
The CCDb database consists of 30 5-minute dyadic conversations.
The 30 interactions are between 16 different speakers (4F, 12M, age
range 25-56 years old). We used the subset of conversations that
were annotated for facial expressions and utterances to train the
listening behavior policy.
A total of 80 minutes of conversational data were used, as we ex-
tracted data from the perspective of each participant. We split the
individual audio streams into moments where the participant was
the speaker or the listener, and extracted features only in the listener
portions of the conversation. As training data, we used the audio
features from the speaker (other participant) as input features, while
extracting the annotated backchannels performed by the listener
participant as ground-truth for how the model should behave. Posi-
tive training instances were moments where vocal backchannels or
head motion (nodding) were present.
State space:We extracted speech features from the speaker: 13-
dimensional mel-frequency cepstrum coefficients (MFCC) and 4-
dimensional prosody features, as per prior literature [26, 36, 48].The



HRI ’23 Companion, March 13–16, 2023, Stockholm, Sweden Maria Teresa Parreira, Sarah Gillet, Katie Winkle, & Iolanda Leite

Table 1: Performance metrics (averaged over all validation folds). Both models used augmented data for training.

Module Model Hyperparameters Performance

Timing GRU
Lookback: 5,activation: sigmoid,

batch size: 16, dropout: 0.0,
loss function: focal,optimizer: Adam

Macro Accuracy: 0.95, Precision: 0.52, Recall: 0.51, F1:0.50
Margin Accuracy: 0.95, Precision: 0.59, Recall: 0.76, F1:0.65

BC Prediction Deviation: 0.83

Type GRU
Lookback: 10, activation: sigmoid,

batch size: 32, dropout: 0.2,
loss function: MSE, optimizer: SGD

Macro Accuracy: 0.64, Precision: 0.37,
Recall: 0.39, F1:0.35

MFCC features were computed every 30ms, with a sliding hamming
window of 400 ms. Prosody features include pitch (fundamental
frequency) and yin-energy, as well as the first derivative of these
variables. The final 34-item feature vector is composed of the mean
and standard deviation of each of these features and is normalized.
It is generated with a frequency of 2 Hz (one sample every 0.5 s) in
the dataset used for training.
Action Space: Both the DataL and NaïveL robots performed the
same backchannel types - vocal utterance, nod of varying amplitude,
or a simultaneous combination of both.

6.2.2 Training the model. We explored different model architec-
tures and adjacent techniques such as data augmentation [36].

Data Augmentation:Murray et al. [36] suggest making use of au-
dio data augmentation as a method to improve the robustness of
robot listening behaviors. The authors report that users rank the
model trained on augmented data higher than a rule-based and a
random model. We adopt this method to augment our own dataset,
by making use ofmasking techniques in the time and frequency do-
mains. Training instances (audio features) were partially masked in
one or both domains, chosen at random. The original and deformed
samples were used for training.
Models:We separated our model into two modules, the Timing
and the Type components, according to the two-stage decision-
making process. The Timing module learns the appropriate timing
to perform backchanneling (like the rule-basedWard and Tsukahara
[53] model), and the Type module decides which type of backchan-
nel - vocal, non-vocal (nodding) or both - the robot should emit.
The first module is a binary classification task (do BC or do nothing).
For positive (’do BC’) outputs in this module, the second module (a
multiclass classification model) decides BC type.
Multiple authors have revealed the potential for the use of neu-
ral networks to learn relevant features automatically [34]; more
recently, many works leverage models that consider previous in-
ternal states, like LSTMs [36, 48], but these architectures are prone
to overfitting. Gated Recurrent Units (GRUs) are an alternative to
circumvent this problem [21], as they are less complex and usually
preferred over LSTMs for small training datasets.
Model Hyperparameter Tuning:We tested different combina-
tions of models and parameters. For both the Timing and Type
modules, we trained single-layer LSTM and GRU models, followed
by a dropout layer and a final dense layer. Each model was trained
either on the original or the augmented dataset, considering vary-
ing previous timesteps, i.e. lookback sizes (5, 10 and 15, respectively
2.5, 5 or 7.5 seconds of data), activation functions (sigmoid, ReLU

and softmax), batch sizes (8, 16, 32), dropout rates (0, 0.2 and 0.4),
L2 regularization (0.1, 0.01, 0.001, 0.0001), loss functions (focal loss,
MSE, binary cross-entropy or hinge loss) and optimizers (SGD and
Adam).
Evaluation Metrics: For the two modules, performance was cal-
culated with macro accuracy (number of correct predictions over
all predictions), precision (probability that emitted BCs match the
ground-truth data), recall (probability that a ground-truth BC is
predicted by the model) and F1-score (harmonic mean of preci-
sion and recall). For the Timing module, in line with similar work
[12, 48], including that of Ward and Tsukahara [53], we calculated
the above metrics considering a tolerance margin of [−500, 500]
ms; we also controlled for robot overreaction with a Backchannel
frequency deviationmetric. For each participant 8 , we considered
the relative difference between the predicted number of backchan-
nels (. 8

?A43
) and the number of backchannels present in the dataset

used for testing (. 8
CAD4 ):

Δ��8
34E

= |. 8
CAD4 − . 8

?A43
|/. 8

CAD4 (1)

Models’ Selection and Performance:Training of themodels was
carried out with data split into 8 non-overlapping participant folds,
in a 6:1:1 train-validation-test split. Early stopping strategies were
deployed for both loss and validation loss, and each model was
trained for a maximum of 100 epochs. A dropout layer and L2
regularization are intended to prevent overfitting.
Both models (Timing and Type) were trained similarly. Hyperpa-
rameters were fine-tuned based on macro accuracy and F1-score.
The final candidates for each model type (LSTM or GRU, augmented
and not augmented training data) were then trained using k-fold
cross-validation (on 8 folds). For each module, we deployed the
model that was most frequently in the top three best-performing
models for each of the metrics mentioned above. Both models are
single-layer GRUs trained on the augmented dataset (see Table 1).
The Timing model outperforms other similar model architectures
for BC prediction [36, 48].
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