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Abstract— A crucial part of traditional reinforcement learn-
ing (RL) is the initial exploration phase, in which trying
available actions randomly is a critical element. As random
behavior might be detrimental to a social interaction, this
work proposes a novel paradigm for learning social robot
behavior–the use of shielding to ensure socially appropriate
behavior during exploration and learning. We explore how a
data-driven approach for shielding could be used to generate
listening behavior. In a video-based user study (N=110), we
compare shielded exploration to two other exploration methods.
We show that the shielded exploration is perceived as more
comforting and appropriate than a straightforward random
approach. Based on our findings, we discuss the potential for
future work using shielded and socially guided approaches for
learning idiosyncratic social robot behaviors through RL.

I. INTRODUCTION

The initial stage of training a reinforcement learning (RL)
agent is often based on random exploration [1]. However,
a randomly acting robot might be inappropriate, be it while
trying to grasp some object in the environment or in a social
interaction with a human. In the latter example, the robot
might nod continuously or nod even though nothing was said
by the person. These inappropriate behaviors could affect the
human in the interaction and alter the interaction. A socially
inappropriate, randomly acting robot cannot guarantee real-
istic interactions from which to learn the desired behavior.
Therefore, we need to ensure that an RL robot acts socially
appropriately during exploration and learning.

In this work, we propose a novel paradigm for learning
social robot behavior that leverages techniques from safe RL,
i.e., shielding [2], to ensure socially appropriate behaviors.
Prior work has approached learning social robot behavior
through, e.g., imitation learning [3] or reinforcement learn-
ing [4], [5]. To ensure appropriateness, related work trained
offline or evaluated policies on unseen data before deploy-
ment [6]. However, offline approaches require exhaustive and
consistent enough datasets to allow for successful training.

In this paper, we address this challenge in the context
of generating socially appropriate listening behavior for a
social robot. An active listening robot should perform short
vocal or non-vocal backchannels [7], e.g., paraverbals (‘mm-
hmm’, ‘uh-huh’, etc.) or nod the head. The timing of these
backchannels and the type of backchannel, vocal or non-
vocal, determine if a backchannel is appropriate. In this work,
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Fig. 1: Snippet from the footage used for the video study. The
experimental setup implies a conversation between the robot
Furhat and a person. In the shown video, the robot indicates
listening through backchanneling utterances and nods.

we focus on ensuring the appropriate timing of backchannels
as one contributing factor to socially appropriate behavior.

To address the challenge of timing for backchanneling
behavior, we build a data-driven shield for our randomly
exploring reinforcement learning robot combined with the
concept of Backchannel Opportunity Points (BOP) [8].
The safe reinforcement learning community often uses a
set of rules or guarantees to realize shielding and ensure
safe behavior. However, prior work exploring the imita-
tion of human backchanneling behavior showed that data-
driven backchanneling behavior outperforms rule-based be-
havior [9]. In addition, to the best of our knowledge, no prior
work explored a set of rules for identifying socially appropri-
ate timing opportunities for backchannels, i.e., BOPs, which
could function as a shield. Therefore, we trained a regression
model on a conversational dataset and combined it with a
threshold on the output to implement the shield.

In a video-based human-robot interaction study, we show
that the exploring robot with a shield is perceived as a
significantly better listener and as acting more appropriately
than the completely random robot. Interestingly, a statisti-
cally guided randomly behaving robot was perceived as the
least rude compared to the shielded and completely random
exploring robot. We discuss these findings in relation to the
reinforcement learning process. In summary, our contribu-
tions are as follows:

1) we propose a novel paradigm for generating socially
appropriate listening behavior within a reinforcement
learning robot using shields

2) we explore data-driven techniques by training a regres-
sion model and combining the output with a threshold
to implement shielding

3) we evaluate the best shield in comparison to other explo-
ration approaches in a video-based user study (N=110).



II. RELATED WORK & BACKGROUND

Our work builds upon literature on backchanneling and
the generation of listening behavior, as well as, work that
explores RL and shielding in the context of HRI. Listening
behavior is characterized by backchannels (BCs) [7], which
are portrayed through body language, such as head nods or
smiles, and short vocalizations (’uh-huh’, ’hmm’). Backchan-
nels are important in conversations, as they can skew the
perception of the interactants [10], including robots [11].

Backchanneling Opportunity Points (BOP). Backchan-
neling occurs in Backchanneling Opportunity Points (BOP)
[8], sometimes also called backchanneling relevant spaces.
Previous work indicates that, on average, there are 3.5 times
more BOPs than actual backchannels [12]. In addition, recent
research has shown that backchanneling behavior is idiosyn-
cratic [13], i.e., it is peculiar to an individual, differing sig-
nificantly. Therefore, it is particularly interesting to explore
how robots could learn their backchanneling behavior whilst
ensuring socially appropriate behaviors through shielding.

Generating listening behavior. Significant amount of
work has studied the generation of listening behavior in
robots. Several approaches explored rule-based methods for
placing backchannels informed by, e.g., prosodic features
[14], [15], or automated methods, e.g., with the help of
Hidden Markov Models and prosodic [16] or multimodal
features [17]. More recently, deep learning techniques have
been use to generate listening behaviors, e.g., with the help of
Recurrent Neural Network models, which capture the tempo-
ral dependencies of continuous signals (i.e., retain “memory”
of previous inputs) [18]. Prior work explored Long-Short
Term Memory (LSTM) layers with audio signals and word
history [19] or made use of LSTMs and multimodal input
[9], as well as, suggesting a method for data augmentation
that positively impacts BC prediction. Other work explores
semi-supervised learning [3], offline RL [4], or temporal-
and modality-attention modules [20]. Different from prior
work, we are proposing a novel paradigm for learning
social behaviors that does not aim to replicate behaviors
from human-human interactions but allows the robot to stay
socially appropriate during exploration for RL.

RL in HRI. There is significant research on RL applied
to HRI. For example, prior work explored how humans can
teach efficiently [21], [22], [23], or better align to baseline
tasks [24]. Also, RL has been used to personalize robot
behavior to an interaction partner. For instance, Mitsunaga
et al. [25] explored adaptive behavior to increase personal
comfort based on human body signals. RL can also be used
to adapt a robot’s empathy [26], humor [27] and language
[28], [29] to comfort, provide entertainment, and improve
learning outcomes [30].

We focus on learning highly reactive robot behaviors. In
this sense, our work relates to that of Qureshi et al. [5],
who used online RL to learn a policy for a humanoid
robot to interact with bypassing strangers. Different from our
work, they use an internal mechanism to detect inappropriate
behaviors by predicting reactions to the robot’s behavior. In

addition, inappropriate behaviors may not be as detrimental
since new strangers pass by regularly.

Other related work focusing on offline RL for HRI ex-
plored learning non-verbal behaviors that aim to increase
engagement in HRI [4], [31]. Closest to our work is recent
work by Gillet et al. [6] which explores the use of offline
RL to learn gaze behaviors that could balance participation
in interaction between one robot and two human group
members. Different from our work, they deploy the behaviors
on test data to choose models that act socially appropriately.

Shielding in RL. Various frameworks incorporate the
notion of safety in RL by emphasizing human intervention as
a key component, though they diverge in their perspectives
on the nature and scope of such intervention. In [32],
the authors advocate for the active involvement of human
experts at different stages of the training process to avert
catastrophic actions. The concept of shielding was introduced
by [2], employing linear temporal logic to establish high-
level constraints that translate into sets of safe actions. In
HRI, the application of shields has extended to discrete
state and action spaces, like in cooking tasks for action
modification [33], and to continuous state and action spaces
in scenarios such as social navigation [34]. This work, to the
best of our knowledge, is the first that designs continuous
shields for safe backchanneling behavior.

III. PROBLEM DESCRIPTION

To formalize the use of shields for appropriate listen-
ing behaviors, we consider reinforcement learning setups
with continuous state spaces S ⊆ Rn, n ∈ N+, and
discrete action spaces A ⊂ Nm,m ∈ N+. To restrict
the robot’s actions to those that can be safely executed
at timestep t, we employ pre-shielding [2], which restricts
the robot’s actions before they are applied. We model
shields as functions S → pow(Asafe) (pow denotes the
power set), mapping the robot’s state to a set of safe
actions. The set of safe actions, Asafe(s) := Ψ(s) ⊆
A, is obtained. More concretely, in our backchanneling
application, shields Ψ restrict the robot’s action to a sub-
set, A = {BCUtt, Nod, Nod+BCUtt, Do nothing}
where BCUtt are backchannel utterances, e.g., mmmhh.

IV. CREATING A SHIELD FOR SOCIALLY APPROPRIATE
LISTENING BEHAVIOR

The shield Ψ for the reinforcement learning robot is built
through a regression model bcmodel and a corresponding
threshold. This means that the regression model is trained
to output a continuous value ot ∈ [0, 1] indicating how
appropriate it is to backchannel at a given timestamp t. The
threshold θ then shields actions as follows:

Ψ =

{
at = Do nothing, if ot <= θ

at ∈ A, otherwise
(1)

with A being the entire set of actions after shielding.



A. Data preparation

We chose Cardiff’s Conversation Database (CCDb)[35] as
our dataset to train the regression model. The CCDb provides
unscripted, non-topic-bounded interactions that demonstrate
a variety of listening behaviors and is publicly available.

The dataset consists of 30 dyadic conversations, each last-
ing around five minutes. The 30 conversations are between
16 different speakers (12 M, 4 F), with ages ranging from
25-56 years old. We extracted data from the perspective of
each participant, totaling 115 minutes of conversational data.

We collected individual feature data for each participant
separately. Since we are extracting data for listening behav-
ior, we use the audio stream of the speaker as the input
features and the annotated backchannels performed by the
listener as the ground truth for the shield.
Shield input: As input features for our model, we ex-
tracted speech features from the speaker, including 13-
dimensional mel-frequency cepstrum coefficients (MFCC)
and 4-dimensional prosody features as used in prior works
[19], [9], [3]. The MFCC features are computed every 30 ms
with a sliding hamming window of 400 ms. Prosody features
include pitch (fundamental frequency) and yin-energy, as
well as the first derivative of these variables. The final 36-
item feature vector is composed of the mean and standard
deviation of each of these features (34 items) as well as one
item for indicating active speech by the speaker and one item
representing the robot state, i.e., if the robot backchanneled
in the previous time step. We normalize the prosody data
(34 items) for each speaker based on the first 30 seconds of
data. Afterward, we normalize the entire dataset for training.
In this work, we sample the features with 10Hz.
Regression model output: We focus on the timing of a
backchannel to indicate if a backchannel is socially appropri-
ate or not. To train the regression model bcmodel, we use the
occurrence of a backchannel as an example for the maximum
value of 1 and all other moments as the minimum value of
0. We further use the ground truth 700 ms earlier than the
backchannel was annotated dataset, creating a gap between
the prediction of backchannel and the need for execution.
This gap to the annotation is based on the pause between
signal and execution considered by [15] and allows us to
accommodate a command-to-execution delay of the robot
when producing backchannels.

B. Training a regression model as a shield for socially-
appropriate listening behavior

To train sufficiently good regression models, we used six-
fold cross validation to explore different model architectures
with techniques such as data augmentation [9]. We upsam-
pled the minority class to compensate for the imbalance
of classes in the dataset. Below, we explain the models
tested, evaluation criteria, and the selection process. We
report model performance in Section V-A.2.
Hyperparameters: We explored two different architectures
that have shown promise for backchannel generation in
previous work [18]: Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU). During the training process, we
explored a lookback, i.e. length of the time series fed into
the model, of 2s, 4s and 8s, different optimization techniques
(SGD, Adam), activation functions (sigmoid, relu), loss func-
tions (mean squared error, mean absolute error, huber loss,
and log cosh), batch sizes (8, 16, 32), dropout percentages
(0, 0.2, 0.4) and different numbers of hidden units (8, 16,
32) of the recurrent networks in a grid search.
Data Augmentation: Murray et al. [9] suggest a method to
improve the robustness of robot listening behaviors by using
audio data augmentation. The authors show that the model
trained on this data outperforms the models trained without
data augmentation which was validated by [18], [36]. We
emulated the proposed method by making use of masking
techniques in the time and frequency domains. In our work,
training instances (audio features) were partially masked in
one or both domains, chosen at random. Both the original
and the augmented instances were used for training. While
upsampling, we augmented the samples independently of the
original sample so that the same sample could be included
in the dataset with different augmentations.
Threshold computation: The threshold θ is a key hyperpa-
rameter of the Ψ(st) → {a1t , ..., akt } ∈ Asafe as it transforms
the output oT of the bcmodel to the set of allowed actions
(see Equation 1). We compute the threshold on the validation
set. First, we observe how many backchannels appear in the
validation set. The goal is to give the robot the opportunity
to choose to backchannel 3.5 more times than are actually
present in the validation set; allow a backchannel in every
BOP. Therefore, we choose the lowest value as a threshold
that leads to the shield allowing the full set of actions a ∈ A
3.5 times more than backchannels in the dataset.
Evaluation criteria: We use the recall of the backchannel
class, i.e., how often the shield allows the total range of
actions A at time steps when the ground truth generated a
backchannel. We first transform the output ot of the regres-
sion model by replacing values with 1 if ot > θ,else 0.
The threshold computation (see above) results that the output
on the validation set contains 3.5 times the amount of values
larger than the threshold than in the dataset. At the same time,
the goal is that the shield allows backchannels in moments
when the dataset had backchannels. For the measurement
of recall, we allow a margin of 250ms for calculating
the recall as suggested by [18]. This means we check a
range of timesteps corresponding to 250ms before and after
the backchannels to detect the correctness of the output.
However, models with multiple repeated outputs above the
threshold would largely benefit from this allowed margin.
Therefore, we remove repeated BOPs in the output to ensure
that models that generate distinct BOPs receive higher recall
values than models that generate clusters of high values. If
two models have the same recall value for the backchannel
class (transformed value of 1), we choose the model with
the higher macro recall value.



V. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our shielding approach,
we conduct a user study evaluating the appropriateness of a
robot using a shielded random exploration approach.

A. User study - Evaluating the exploring RL robot

The user study aims to evaluate a robot using a shielded
exploration strategy (SH) in comparison to two variants of
unshielded exploration - one statistically guided unshielded
approach (SG) and one completely randomly exploring ap-
proach (RA). We evaluate these three conditions in an online
video study as visualized in Figure 1. We kept the input audio
from the speaker the same in all three conditions but recorded
different robot behaviors.

1) Hypotheses: For the experimental evaluation in the
user study, we formulate three hypotheses covering the per-
ception of the robot’s listening behavior, the appropriateness
of backchannels, and the robot’s perceived intelligence.

As the shield was trained on a human-human dataset and
aims to only allow backchannels in BOPs, we hypothesize:
H1 The randomly exploring robot is perceived as a better

listener with shielding than without shielding, i.e., when
it is using a statistically guided (SG) exploration (H1a),
or when it is using a random exploration method (H1b).

H2 The robot is perceived as backchanneling more appro-
priately with shielding than without shielding, i.e., when
it is using a statistically guided exploration (H2a), or
when it is using a random exploration method (H2b).

As a result of the effects predicted in the first two hypotheses,
we further hypothesize that backchanneling more appropri-
ately and being a better listener might affect aspects of the
robot’s perceived social intelligence. We hypothesize:
H3 The robot is perceived as more socially competent and

trustworthy, friendlier, and less rude while using the
shield than without the shield, i.e., while it is using a
statistically guided (SG) exploration (H3a), or when it
is using a random exploration method (H3b).

2) Conditions: The user study used three conditions to
evaluate the effectiveness of shielding for the exploring robot.
Note that the input audio is exactly the same for all three
conditions and was extracted from the Talking with Hands
dataset [37]. Since we focused on socially appropriate timing,
the robot randomly1 decided which action of the full action
set A to use, i.e., if it used a backchannel utterance only
(BCUtt), a nod only (Nod), noded and uttered a backchannel
(BCUtt+Nod), or did nothing (Do nothing) whenever
the shield allowed A.
SH The shielded condition used a shield trained, evaluated,

and selected as described in Section IV. The perfor-
mance of the top three models is reported in Table I
top and the final model’s performance on the top three
folds in Table I bottom for each LSTMs (a) and GRUs
(b) separately. The individual best-performing model
was m 602, which was chosen for this condition. The

1We set the random seed to 42.

input audio stream was processed the same way as
described in Section IV-A- Regression model input and
then passed to the regression model bcmodel. With the
help of the threshold θ, the shield decided which set of
actions the robot may use in each time step according
to equation 1. As the shield was allowing 3.5 times
the amount of backchannels capturing the BOP, action
Do nothing was chosen with a 3.5 higher likelihood
than options BCUtt,Nod and BCUtt+Nod combined.

SG The statistically guided condition aimed to replicate
approximately the same number of backchannels as the
SH condition. The difference to SH was that the time
steps at which backchannels were allowed were chosen
randomly. Since we focused on replicating the number
of time steps of executed notable backchannels from
condition SH, action Do nothing was not used.

RA In this condition, the robot could use the full set
of actions at every time step. To avoid continuous
backchannel, action Do nothing was chosen with
probability 0.5.

3) Measures: To evaluate our hypotheses, we conducted
a video-based user study and used questionnaire-based mea-
sures to assess the effectiveness of the shielding approach.
Perceived Social Intelligence: We selected the four factors
from the Perceived Social Intelligence Scale [38] that fit our
experiment. We measured the robot’s SOcial Competence
(SOC), and how friendly, rude, and trustworthy the robot
was perceived on a seven-level Likert item.
Appropriateness of backchannels: To specifically ask
about backchanneling timing, we added three questions
inspired by [9] asking whether the timing was appropriate,
whether the timing was inappropriate, and if opportunities
for backchannels were missed. Answers were given on a
5-level answer scale ranging from ’Never’ to ’Always’.
Listening quality: We adopted the scale proposed by Mur-
ray et al. [9] to measure the perceived listening skill and
feeling of comfort and closeness under the premise of
listening behavior measured on a seven-level Likert item.
Like the original work, we found good reliability of the
two factors measured through Cronbach’s alpha (perceived
listening skill: α = 0.824, feeling of comfort and closeness:
α = 0.782).

4) Procedure: After giving informed consent, participants
answered demographic questions about their age, gender
identity as well as participation in previous social robot
user studies. Afterward, they were shown a video2 of an
interaction between the robot Furhat and a person. The
person was shown from the back. Figure 1 shows a frame
from this video. We used two audio snippets from session
32, take 18 (Minute 1:04-1:50, 5:31-5:54) from the Talking
with Hands dataset [37]3 as the audio stimulus. We computed
the voice scaler from session 32, 30 seconds of take 5. We

2Condition SH: https://youtu.be/PemdDOE0xVc, Condition
SG: https://youtu.be/qsHJWxAU_Xw, Condition RA: https://
youtu.be/0IsNiGusHF4

3https://github.com/facebookresearch/TalkingWithHands32M



TABLE I: Evaluation of different models by architecture allowing for a margin of 250ms. The top three rows for each
architecture summarize evaluations over all folds and the lower three rows describe the best-performing individual shields.

(a) Models trained with LSTMs.

Identifier Lookb. Optim. Act. Loss function batch s. drop. RNN u. % full A Recall v. Recall macro θ
m 1464-m 1469 20 SGD relu huber loss 8 0 16 0.032 0.94 0.959 0.38
m 5784-m 5789 80 Adam relu mean squared error 32 0 16 0.035 0.936 0.956 0.476
m 2442-m 2447 20 Adam relu log cosh 8 0 32 0.036 0.936 0.956 0.209

m 1464 20 SGD relu huber loss 8 0 16 0.033 0.96 0.969 0.333
m 1466 20 SGD relu huber loss 8 0 16 0.027 0.955 0.967 0.496
m 1469 20 SGD relu huber loss 8 0 16 0.032 0.947 0.963 0.364

(b) Models trained with GRUs.

Identifier Lookb. Optim. Act. Loss function batch s. drop. RNN u. % full A Recall v. Recall macro θ
m 600-m 605 20 Adam relu mean squ. error 32 0 16 0.035 0.939 0.958 0.532
m 5784-m 5789 80 Adam relu mean squ. error 32 0 16 0.032 0.935 0.956 0.527
m 2280-m 2285 20 Adam sigmoid log cosh 8 0 32 0.032 0.932 0.954 0.498

m 602 20 Adam relu mean squ. error 32 0 16 0.033 0.96 0.97 0.604
m 603 20 Adam relu mean squ. error 32 0 16 0.041 0.952 0.961 0.436
m 600 20 Adam relu mean squ. error 32 0 16 0.03 0.944 0.96 0.672

muted the listener’s voice to obtain the speaker’s audio only.
To ensure an equal audio stimulus in all conditions, we used
a boombox in front of the person to play back the audio.
Unfortunately, the playback through the boombox led to re-
duced audio quality. Therefore, we showed subtitles to every
participant. After watching the video, participants were asked
to fill out attention check questions and the perceived social
intelligence, listening behavior and appropriateness questions
in the given order. Participants received 1.60£ compensation
for participating in the study.

5) System implementation: The system ran with the help
of the Robot Operating System 14 and the Furhat5 robot.

The system could run with any offline or online audio data.
For the purpose of the study, we extracted the audio files
from the Talking with Hands dataset [37]3 as described in
Section V-A.4. From the audio files, we prerecorded rosbags
with features sampled at 10Hz. For the final video recording,
the same rosbag was used for generating the three different
conditions. The decision-making was triggered based on the
incoming audio features, which means that decisions were
made at the same time stamps for all three conditions.

As there is no robot speech other than backchannels in
the video stimuli, Furhat’s voice was set to the German
voice ’Andreas’ due to the sound of the backchannels. We
randomly choose between ’ #MMM02#’ and ’#MMM01#
for backchannel utterances. The nod was implemented as a
disposition of the neck randomly between 5 and 12 degrees.
The face was set to ’Titan’ as we wanted to keep the robotic
appearance of the robot. We used the Furhat remote-api to
control the robot. The shield’s main role was to ensure the
appropriate timing of backchannels at 10Hz. However, when
the robot queues commands, the delay between the command
being sent and the robot executing is varying and sometimes
it might take up to a few seconds. To avoid unpredictable
delays in the system, we blocked sending commands to the

4https://www.ros.org/
5https://furhatrobotics.com/

TABLE II: Age distribution of participants.

18-24 25-34 35-44 45-54 55-64 65+
7 34 22 15 8 6

robot for 800 ms after sending a command. In our system,
we observed a delay from receiving the audio signal to
hearable/visible command execution of ∼200 ms which is
within the 700 ms anticipated during data preparation. We
delayed all commands by an additional 500 ms to match the
training data. For all random choices, the seed was set to 42
at the beginning.

a) Implementation of SG condition: As probability-
based decision-making can result in a randomly lower actual
number of backchannels, we planned backchanneling on a
fixed horizon, i.e. 30 seconds, ahead and distributed the
backchannels randomly according to the given percentage of
time steps that should have backchannels along the horizon.
If only 20% of the planned time steps on the horizon
were left, we planned the actions for the next horizon.
After inspecting the recording, which contained the executed
backchannels corresponding to the SH condition, we set the
percentage to 4.4%, which was 26 backchannels in 590 time
steps, i.e. 59 seconds.

6) Participants: We recruited in total 110 participants
through Prolific6 of which 92 were used for the final anal-
ysis (46 female, 44 male, 1 non-binary, age distribution
reported in Table II). 66 participants indicated having never
participated in a social robotics study. 13 indicated they
had participated in a social robotics study and 13 were
unsure. We used Prolific’s recruitment procedure to only
allow UK participants to avoid potential confounds of culture
in our study. We ran an a priori power analysis in R7 for
mixed Analysis of Variance (ANOVA) using an effect size
of f = 0.4, an alpha of 0.05 with power set to 0.9. The

6https://www.prolific.com/
7We used the pwr package in R 4.3.2



Fig. 2: Regression model outputs (blue solid) plotted with the respective threshold (horizontal line) (lowest plot). Above,
green dashed lines indicate the moments in which the robot decided for an action other than Do nothing in the SH
condition (lower middle), the SG condition (higher middle), and RA condition (top). The empty start is the time needed to
collect the sequential data for the regression model, i.e., shield output.

power analysis suggested a total sample of 84 participants,
meaning 28 participants for each of the three conditions.
After the initial experiments, we ran subsequent experiments
to compensate for excluded participants until one condition
had at least 28 participants. 16 participants were excluded
from the analysis as they failed the first (10 participants) or
second (6 additional participants) attention check. Attention
checks asked for video content and fixed ratings on one
question.

B. Results from user study

Perceived Social Intelligence: After verifying normality
and homogeneity of variance, we performed a one-way
ANOVA on the friendly scale. We did not find a significant
influence of condition on how friendly participants thought
the robot was (F (2) = 0.29, p = 0.744). The remainder
of the outcome variables for perceived intelligence were
non-normal. A Kruskal-Wallis H test showed that there was
a statistically significant difference in how rude the robot
was perceived between the different conditions, χ2(2) =
9.12, p = 0.01, with a M = 3.23, SD = 0.77 for SH,
M = 2.71, SD = 0.98 for SG and M = 3.56, SD = 1.33
for RA. A pairwise comparison with Bonferroni correction
showed that the RA condition (p = 0.025) and the SH
condition (p = 0.046) were perceived as significantly more
rude than the SG condition. The other outcome variables
measuring trustworthiness (χ2(2) = 1.75, p = 0.415) and
social competence (χ2(2) = 2.13, p = 0.345) were not
significantly different between conditions.
Appropriateness of backchannels: As the three additional
questions about appropriateness did not show reliable overlap
(α = 0.4), we evaluated each question separately. As the data
was non-normal, we used a Chi-squared test with condition

as the predictor. We found that condition significantly af-
fected the amount of appropriate timing χ2(8) = 30.334, p <
0.001. A pairwise comparison with Bonferroni correction
revealed that there was more appropriate backchanneling
in the SG conditon compared to the RA condition (p <
0.001) and SH condition compared to the RA condition
(p = 0.038) with M = 3.36, SD = 0.82 for SG, M =
3.39, SD = 0.73 for SH, and M = 2.94, SD = 1.12
for RA. Similarly, the amount of inappropriate timing was
affected by condition χ2(8) = 26.556, p < 0.001. A pairwise
comparison with Bonferroni correction revealed a significant
difference between the SG and RA condition (p < 0.001)
with M = 2.33, SD = 0.92 for SG, M = 2.89, SD = 1.06
for SH, and M = 3.74, SD = 1.09 for RA.
Listening quality: Both factors measuring listening quality
were not normally distributed. A Kruskal-Wallis H test
showed that there was a statistically significant difference in
how comforting and close the robot was perceived between
the different conditions, χ2(2) = 6.924, p = 0.031, with
M = 3.68, SD = 1.08 for SH, M = 3.28, SD = 1.1
for SG and M = 3.00, SD = 1.12 for RA. A pairwise
comparison with Bonferroni correction revealed a significant
difference between the RA and SH condition p = 0.026.
The perceived listening skill was not significantly different
between conditions (χ2(2) = 5.44, p = 0.065).

C. Model performance in scenario

The Talking with Hands dataset used to extract audio for
the user study does not provide annotations. Thus, we cannot
evaluate the objective quality of the backchannels outside of
the user study. Figure 2 shows the output of the regression
model, the threshold, and the respective random decision by



shield SH. For comparison, we further plotted the output of
the SG and RA condition, which we discuss in Section VI.

VI. DISCUSSION & LIMITATIONS

In this work, we evaluated if a shielding approach would
allow for socially appropriate behavior during the exploration
phase in an RL setting. We compared shielded exploration
with two other exploration methods: one that represents a
feasible and straightforward approach to exploration (RA),
and another exploration method that offers a more thoughtful
comparison that still offers valid exploration (SG). Based on
the results from the video study (refer to Sec. V-B), we did
not find evidence in favor of the shielded condition (SH)
when compared to the statistically guided exploration (SG).
Therefore, we have to reject all hypotheses–H1a, H2a, H3a–
concerning the comparison between these two conditions.

The chosen random seed for the experimental evaluation
might have affected the results for the SG condition and thus
the comparison between the SH and SG conditions. We set
the seed prior to running any of the recordings for the user
study. In Figure 2, we can observe that there were fewer
backchannels present in the SG condition despite the careful
implementation to ensure similar amounts of backchannels
(see Section V-A.5). One reason for this smaller number of
backchannels is that the randomly distributed backchannels
appeared close to each other which led to them being filtered
out by the execution system (see Section V-A.5). Further, a
portion of the executed backchannels in the SG condition
were by chance close to BOPs as identified by our shield
(bottom plot in Figure 2). It is possible that another random
seed would have resulted in different experimental outcomes.
Future work should therefore consider evaluations on a larger
range of stimuli. For the RA condition, we do not expect that
the outcome would change with a different seed due to the
almost continuous backchanneling.

Despite the continuous backchanneling in the RA con-
dition, we have to reject H3 as we did not find significant
differences for perceived intelligence in favor of the shielded
exploration. Interestingly, the SG condition was perceived as
significantly less rude than both the SH and RA condition.
As discussed above, this result could be a result of by
chance appropriate timing or due to the smaller number of
backchannels present in the SG condition (see Figure 2).

Despite the lack of difference for perceived intelligence,
we can partially accept H1b and H2b indicating that the
robot in the SH condition was perceived as closer and
more comforting (H1b) and as more appropriate (H2b) than
the robot in the RA condition. Interestingly, the perceived
listening skill was not affected.

Based on the results from our user study, we can conclude
that the shielded exploration method (SH) or statistically
guided exploration (SG) might provide sufficient interac-
tion quality that would allow for reinforcement learning.
However, we expect that the statistically guided exploration
would take longer to explore the relevant state space due to
the scarcity of backchannels and the lack of any additional
guidance such as the shield.

One limitation of our work is the limited variability of
the interaction context in the dataset and the dataset size.
Future work should explore the effects of the amount and
variability of data on the effectiveness of the shields and
explore how large datasets for listening behaviors could be
collected efficiently.

We note that our results might not be completely realistic
as it is unlikely that a speaker would not react to extensive
or falsely timed backchannels. To ensure that participants’
perceptions in the user study were solely based on the
alteration of the robot’s behavior, we kept the audio stim-
ulus constant. This approach allowed us to remove possible
confounds based on the speaker’s reactions to the robot’s
listening behavior. However, one potential reason for the lack
of significant difference between conditions for some of the
measures could be due to the lack of adaption of the human
speaker to the potentially mistimed backchannels. In this
study, we decided to focus on the robot’s behavior and avoid
confounds due to speaker reactions. Future work will need
to further investigate the promise of shielding for socially
appropriate listening behavior in interaction especially given
the robot’s behavior potentially altering the human’s reaction
in the exploration phase.

Backchannels and other communicative behaviors are id-
iosyncratic [13], i.e., they are peculiar to an individual. For
robots to develop distinct communicative behaviors, tech-
niques such as reinforcement learning might be more suit-
able than, imitation learning which would merely replicate
human behavior. This work provides promising indications
that shielding could be one approach to ensure appropriate
backchanneling behavior during exploration. Future work
will need to explore if statistically guided approaches can be
leveraged or if shielding has additional benefits, e.g. needing
fewer data points. In this case, the effort of training and
choosing a data-driven shield might be favorable considering
the potential benefits of fewer data points for online training
with human participants interacting with the system.

VII. CONCLUSION

This work proposes shielding for RL as a novel paradigm
to learn idiosyncratic social behaviors, e.g., listening be-
havior. We provide a full problem formulation and focus
on studying the exploration phase of the RL problem. We
compare the proposed shielding approach to two other ran-
dom exploration methods - one statistically guided approach
and one completely random approach. In a video-based user
study, we show that the shielded and statistically guided
exploration approaches are perceived as having higher lis-
tening quality, being more appropriate (shield) or being less
rude and less inappropriate (statistically guided). Therefore,
these two approaches are better suited for creating sensible
interactions during the exploration phase than a fully random
approach to exploration. Future work will need to answer if
both approaches are similarly suitable for efficient learning
of listening behavior in interaction with people.
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