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ABSTRACT 
Many small group activities, like working teams or study groups, 
have a high dependency on the skill of each group member. Dif-
ferences in skill level among participants can afect not only the 
performance of a team, but also infuence the social interaction 
of its members. In these circumstances, an active member could 
balance individual participation without exerting direct pressure on 
specifc members by using indirect means of communication, such 
as gaze behaviors. Similarly, in this study, we evaluate whether a 
social robot can balance the level of participation in a language 
skill-dependent game, played by a native speaker and a second lan-
guage learner. In a between-subjects study (N = 72), we compared 
an adaptive robot gaze behavior, that was targeted to increase the 
level of contribution of the least active player, with a non-adaptive 
gaze behavior. Our results imply that, while overall levels of speech 
participation were infuenced predominantly by personal traits of 
the participants, the robot’s adaptive gaze behavior could shape 
the interaction among participants which lead to more even partic-
ipation during the game. 
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Figure 1: Overview of the interaction between the Furhat ro-
bot and two participants with diferent skill levels in a skill-
based task. 

1 INTRODUCTION 
Many of our everyday interactions take place in small groups. Al-
though diversity in terms of knowledge and skills possessed by 
each group member may cause groups to outperform individuals, 
when the skill gap between members becomes too large this may 
prevent the group from exploiting this potential [39]. Especially in 
educational settings, with learners at diferent skill levels (e.g., do-
main knowledge, linguistic profciency, etc.), creating a prosperous 
learning environment in small group activities remains a difcult 
task, even in traditional classroom situations [6]. 

Social robots have previously been successful in educational 
settings [1, 30] and group interactions [4, 7, 17, 23]. Furthermore, 
social robots have been able to infuence group dynamics such as 
cohesion [33] and inclusion [34] and support groups in situations of 
confict [15, 29] and debate [12, 25]. Group dynamics is a complex 
factor that is constantly evolving [36] which calls for adaptive robot 
behaviors. 

As 60-65% of human communication is non-verbal [2], the explo-
ration of non-verbal robot behaviors for infuencing groups might 
be promising. Non-verbal robot behavior has, previously, been used 
to mediate participation in groups. In a recent work, a specially 
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behaviors [37]. We explore how adaptive non-verbal robot behav-
iors, specifcally gazing, can balance participation in groups with 
diverging skill levels. 

To investigate how natural, adaptive, non-verbal robot behav-
iors could support the development of group dynamics, we chose 
language as a skill and paired a native speaker and a second lan-
guage learner of the same language to play a language-focused 
game with a robot. The diferent robot behaviors were evaluated 
in a between-subject design. Seventy-two participants in thirty-six 
pairs engaged in a game in which players had to describe target 
words while another player guessed which word was described. 
In our experiment, the fully autonomous robot took the role of 
the guesser and the pair of participants cooperated to provide rele-
vant verbal information that allowed the robot to guess the word 
(see Figure 1). As gaze behavior has been identifed as a promising 
method to infuence groups [21, 31], we designed the robot’s gaze 
behaviors to autonomously adapt moment-by-moment using real-
time evaluation of participation levels with the goal of structuring 
and balancing participation in the activity. 

2 RELATED WORK 
To investigate how a robot could maximize a team’s productivity, 
Claure et al. [3] utilized Multi-Armed Bandits managed by a ro-
bot system in a collaborative Tetris game so that the robot could 
assign resources based on the team members’ skill levels. As this 
results in the less skilled member receiving fewer resources, they 
further examined how this could be achieved while still maintain-
ing perceived fairness in the distribution of resources among team 
members. Our work explores the same phenomenon of diferent 
group skills, but we focus on promoting long-term improvement 
in skill for the individual and the group rather than the team’s 
immediate productivity. In social educational settings, the applica-
tion of robots as facilitators in a collaborative group task has been 
found promising in terms of time management, objectivity, and 
efciency [26]. 

An increasing number of human-robot interaction (HRI) studies 
have focused on how robots can infuence group dynamics. These 
works can be divided into directly or indirectly infuencing meth-
ods that use verbal or non-verbal approaches. Considering direct 
verbal methods, a robot was found to be able to infuence group 
dynamics in confict situations by openly addressing interpersonal 
violations [15]. Similarly, verbal robot interventions were used to re-
solve object possessing conficts among children constructively [29]. 
With the goal of enhancing human-human collaboration among 
children, a robot that expressed interpersonal cohesiveness com-
pared to task cohesiveness utterances was found to lead to higher 
perception of team performance [32]. Further, Shamekhi and Bick-
more [28] showed how a robot could act as a facilitator and improve 
human-human meetings. As one aspect of meeting facilitation, they 
explored a direct verbal method to infuence participation equality 
by asking passive participants about their opinion before accept-
ing the group decision. Other authors have studied the efects of 
indirect verbal behaviors (i.e., not addressing the targeted group 
dynamics directly). For example, by making vulnerable expressions, 
e.g., "Sorry guys, I made the mistake this round", a ripple efect 
was found in the team of three humans and the robot that lead to 
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Figure 2: Diagram describing the fow of the robot gaze be-
havior. 

more trust-related behaviors within the group [35] and improved 
the dynamics of the conversation [38]. Further, robots have shown 
to improve inclusion of out-group team members, both for adult 
teams [34] and groups of children [9]. 

Methods that indirectly infuence group dynamics use non-verbal 
behaviors such as gaze and backchannels. In pioneering research, 
Mutlu and colleagues [20, 21] showed how gaze behavior can shape 
conversation roles by manipulating the frequencies with which the 
robot gazed at participants. Gaze also has been shown to increase 
story recall [19] and the persuasive power of a robot [10]. Further, 
Skantze [31] analysed how a pair of participants interacting with 
a Furhat robot reacted to the robot giving the turn to one ran-
domly chosen participant. These results indicated that participants 
successfully took the turn from a humanoid robot following its 
gaze cues. As one of the most related examples to our work, the 
microphone-shaped MicBot robot [37] was designed with the goal 
of balancing conversation participation through direct non-verbal 
behaviors. By encouraging the least active participant by turning 
towards them, MicBot could achieve higher and more even engage-
ment in a conversation among a group of three. Our work builds 
on the results from this study and on the large body of research of 
how nonverbal behavior can infuence human group interactions. 
We investigate how a human-like robot embodiment with natural 
adaptive gaze behaviors could encourage the less active participant 
in a game and thereby balance participation, in the particular case 
of groups with diferent skill levels. 

3 ADAPTIVE GAZE BEHAVIOR FOR 
BALANCING GROUP PARTICIPATION 

In this work, we developed an adaptive robot gaze behavior that 
reacts to the current estimate of participation in the task, which is 
used as an indication for the dynamics of the group. Based on fnd-
ings by Mutlu et al. [20, 21], the robot shifts its attention between 



the users with the aim of shaping participant roles and encourage 
participation by the least active participant in cases of silence. Fig-
ure 2 gives an overview of how the robot adapts its gaze behavior 
based on the current group behavior. If the participant with the 
larger amount of speaking time (the dominant participant) is talk-
ing, the robot attends to both participants equally. If the participant 
with the smaller speech amount (non-dominant participant) is talk-
ing, the robot instead shifts gaze based on the relative amounts of 
speaking time. The latter gaze-shift behavior is also executed in 
cases of silence. We defne the relative speech amount, or more 
precisely the speech ratio ��� , for participant � as 

speech� 
��� = , (1)

speech� 

where speech� is the accumulated time in seconds of speech of 
participant � and speech� that of the other participant � . To achieve 
an encouraging and speech balancing behavior, we use ��� to defne 
the proportion of the robot’s gazing towards either participant. 
The idea is that the gaze is distributed evenly when the dominant 
participant is talking, but that the non-dominant participant gets a 
share of gaze time that is 1 larger than the other participant when ��� 

talking. Algorithm 1 shows how the gazing behavior is calculated. 
The gaze-shifting decision making algorithm is called whenever 
a change in talker occurs and is then repeated whenever a gaze 
change is intended (after timeNextAction seconds) and is always 
performed with the current real-time estimations of ��� for each 
participant. 

While developing the robot behavior, we further considered that 
humans might not fully align their head angle with their gaze, 
particularly for small gaze angles [8]. As only eye gaze, though, 
might not be noticed and the coordination of movement and gaze 
was shown to be important [40], the robot executes small head 
rotations towards the participant who is the gaze target. These 
head rotations are coordinated with and support the eye gaze. The 
robot’s head pose is further determined by the current speech ratio 
and, therefore, the current group dynamic. The smaller ��� is for 
the currently talking participant (or in case of silence), the more 
the head pose will point towards this participant. If the dominant 
participant is talking the head pose will point to the middle between 
participants. 

4 STUDY DESIGN 
To evaluate the efects of the adaptive gaze behavior on human 
group dynamics, we designed a between-subject study with two 
conditions. In the experimental condition, the robot behaves as 
described in the previous section; in the control condition the robot 
instead gazes mostly only at the speaker (more details in Section 
4.2). As a task, we designed a variant of the game With Other Words 
(original in Swedish Med Andra Ord) in which two human partic-
ipants can simultaneously give hints to a robot that attempts to 
guess which word was hinted at by using an autonomous guess 
generator (c.f. Section 4.3.1). In each group, the pair of participants 
was formed by a native Swedish speaker and a second language 
learner of Swedish with low-intermediate to advanced language 
profciency. 

Algorithm 1: Gaze-shifting decision making 

Data: �� = participant at whom the robot is currently 
gazing 

�� = seconds the current gaze lasted 
minimumGaze = minimum time for a gaze, 
maximumGaze = maximum time for a gaze 
Result: Participant to gaze at, time for gaze, head pose 
�� = participant who is currently talking; 
��� = participant not currently talking; 
���� = compute speech ratio following equation 1; 
if �� == �� then 

// gaze at participant currently not talking 
ratio = min(���� , 1); 
timeNextAction = ratio2 ∗ �� ; 
headPose = calculate head pose from speech ratio; 
return ��� , timeNextAction, headPose; 

else 
// gaze at current talker 
// for a speech ratio of 1.0, keep given 

times for gaze to sample from, otherwise 
shorten gaze if ratio > 1.0, lengthen gaze 
if ratio < 1.0 

timeInfuence = 1.0 - ���� ; 
timeInfuence = max(timeInfuence, (minimumGaze -
maximumGaze) / 3.0); 

timeNextAction = sampleBetween(minimumGaze + 
timeInfuence, maximumGaze + timeInfuence) ; 

headPose = calculate head pose from speech ratio; 
return �� , timeNextAction, headPose 

end 

4.1 Hypotheses 
As discussed in Section 2, Mutlu et al. [21] suggested that a robot 
is able to shape conversational roles through gaze and Skantze [31] 
showed that participation could be induced by non-verbal behaviors 
coupled with gaze. Based on these fndings, we formulate our frst 
two hypotheses: 

• H1 Participants will participate more evenly in describing the 
words when playing with a robot showing gaze behaviors that 
attempt to balance group participation. 

• H2 Participants will speak more and take more turns when in-
teracting with a robot that encourages balanced participation. 

As the robot is displaying a gaze behavior that encourages less 
active participants and particularly language learners to practice 
their skill with a native speakers, we further hypothesize that: 

• H3 The robot will be perceived as more socially present when 
balancing the interaction through gaze. 

• H4 Considering language learners, the willingness to practice 
the language will increase throughout the interaction when 
interacting with the experimental condition. 



(a) The game displaying the 
target word on the tablet. 

(b) The game screen after 
the word is hidden. 

Figure 3: The game With Other Words as shown on the tablet 
to the participants. The word in the example is kyrktorn -
church tower. First, participants are shown both the word 
and the picture below the timer (3a). After a predefned 
amount of time, the word and picture are hidden but can 
be shown again upon request (3b). Tablet buttons: Visa ordet 
igen - Show word again; Gissat rät! - Guessed correctly! 

4.2 Conditions 
To test our hypotheses, we compared the robot gaze behavior as 
described in Section 3 in the experimental condition with an alter-
native believable gaze behavior in the control condition. As the 
robot in the control condition was not considering real-time evalua-
tion of group dynamics, the robot was always gazing at the person 
currently talking to attend to the fow of the conversation. This 
behavior was realized by using the same voice activation detection 
as in the experimental condition. As the gazing behavior in the 
experimental condition is dynamic in gaze targets, we employed 
a similar dynamic in the control condition. The robot changed its 
gaze target with a similar frequency as the robot in the experimen-
tal condition, but it was performing gaze aversion (with targets left 
or right above the participant, dependent on seating) instead of 
gazing at the other participant. The robot performed gaze aversion 
~25% of the time, meaning if the robot had looked 5s at the speaker, 
it would perform gaze aversion for 1.25s and then look back to the 
speaker. The gaze target for aversion was kept constant to avoid 
the impression of a robot randomly looking around in the room. 
Because gazing to the other participant could recreate the behavior 
present in the experimental condition, we decided to not gaze at the 
other, non-talking participant, in the control condition. Guessing 
the words and other non-verbal expressions (i.e., backchannelling) 
were performed in the same way in both conditions. 

4.3 With Other Words 
Our goal with using a variant of the With Other Words game was 
to create an engaging task in which the diferent profciency skills 
among participants would become apparent while ensuring that 
spoken language practice would still be possible for participants 
with low profciency. In each interaction, participants collabora-
tively tried to produce utterances that describe a target word shown 

on a tablet (see Figure 3) to the robot. As in the original game, the 
target guess word was forbidden and could not be pronounced. 

Participants were instructed that they could describe each target 
word together and did not need to take separate turns for each round. 
Each round with one target guess word had a maximum play time 
of 60 seconds or was terminated when the participants indicated 
that the robot guessed the word correctly by clicking a button 
in the tablet. We provided an image representing the meaning of 
the word to avoid the situation in which language learners could 
become passive because they did not know the meaning of the 
word. Both the target word and accompanying descriptive image 
were hidden after 8 seconds to avoid participants focusing their 
attention on the tablet instead of the robot, as the participants 
could then risk missing the gaze and head pose patterns of the 
robot. Similar to the original game, participants played words with 
three increasing difculty levels. The higher the difculty, the more 
the skill – language – is needed. The reason for using diferent 
difculty levels was to study the infuence of the robot behavior as 
the skill (in our case, language profciency) becomes more critical 
for accomplishing the task of describing the guess word. 

Participants had to play a minimum of 10 target words and 6 
minutes on the easy level, 8 words and 6 minutes on the medium 
level, and 4 words and 3 minutes on the hard level. Participants 
were not aware of the difculty level increase. The target words 
available in the game were randomly taken from the Swedish pocket 
version of the original game while ensuring their feasibility for the 
autonomous guessing process. During the game, the target words 
were randomly sampled from the current difculty level. To avoid 
possible confounds with a specifc word order, there was no given 
order or word list that was played by each participant pair. 

4.3.1 Autonomous guess generation. The process of generating 
guesses in a human-like manner during the game is complex given 
the various ways in which the participants could explain each 
target word (e.g., descriptions, completing a sentence, synonyms, 
situational similarities). To reduce this complexity, we limited the 
guessing vocabulary knowledge of the system, i.e., for each target 
word, we defned a list of useful alternative words – the guessing 
vocabulary. These lists of words were defned during extensive pilot 
studies in which the robot’s guessing was performed by a wizard 
(i.e., controlled by a human operator). To decide which word from 
this list would be the most appropriate, the automatic speech recog-
nition system1 continuously recorded the participants’ speech (with 
a separate microphone each) and processed individual transcrip-
tions. The received transcriptions were then fltered for keywords. 
The guessing process then aimed at computing the similarity be-
tween keywords in the description and each word of the guessing 
vocabulary. Therefore, the process of prompting a guess started 
by computing Word2Vec[18]2 embeddings of all keywords given 
by the participants and encode them in a single average context 
vector. Afterwards, we compared the distance between the system’s 
guess vocabulary and the context vector with cosine similarity. The 
vocabulary word with the least distance to the context vector was 
chosen as a guess. To decide when the correct word should be ut-
tered by the robot, we used the data of the extensive pilot studies 

1Google Cloud Speech API 
2Swedish CoNLL17 corpus from http://vectors.nlpl.eu/repository 

http://vectors.nlpl.eu/repository


and analyzed when, given the length of descriptions in seconds, 
the wizard would have the robot utter the correct guess word. In 
the process of guessing, the robot reacted to pauses in the speech 
activation. If the speech recognition system detected a predefned 
amount of keywords in the transcribed speech (in our case 20%) 
and the sample based on the distribution of length of descriptions 
indicates that the guess should be given, the robot uttered the word. 
For example, if participants described the word for ~7 - ~20 seconds, 
there would be a 20% chance of the robot guessing the word in the 
next pause. 

We noticed during the pilot studies that giving the correct guess 
while gazing at one participant might be perceived as a direct 
reaction to this participant’s last utterance and infuence that par-
ticipant’s confdence level (and future participation in the game). To 
avoid this potential confound with our experimental manipulation, 
the robot looked at the middle of the two participants when saying 
the correct guess word. We did not observe that incorrect guesses 
uttered by the robot would infuence confdence. Therefore, we 
only made this exception to the robot gaze behavior when the robot 
was uttering the correct guess. 

The autonomous guessing process was monitored by a wizard. 
Whenever the participants were talking and therefore did not hear 
or understand correctly what the robot said, the wizard could repeat 
the word. Caused by a misinterpretation of the picture, participants 
in some rare cases accidentally described a diferent word. In these 
cases, the wizard had the robot utter the word participants were 
expecting. The wizard intervened for the two latter cases combined 
for ~2% of all uttered words. 

4.3.2 The system set-up. We used a Furhat robot3 with the iRobot 
face texture and the Swedish female voice Elin from Acapela group4. 
The game interface implemented in Unity was displayed on a tablet. 
Each participant was wearing two close-talk microphones, one for 
voice activation detection and one for automatic speech recognition. 

4.4 Measurements 
We collected a variety of measures during the game as well as 
additional measures in a pre- and post-experiment questionnaire. 

4.4.1 In-game measures. As part of the study design, the words 
participants were asked to describe had three diferent increasing 
difculty levels. To refect the infuence of the robot’s behavior as 
the language profciency (imbalanced skill between participants) 
became more critical, we collected each of the following character-
istics for each difculty level in the game. 
Active participation - During the game, we measured the amount 
of active participation by analyzing the duration of voice activity 
detection (VAD) for that participant. For each difculty level, the 
active amount is the total duration of VAD in relation to the total 
duration of that difculty level. 
Number of turns taken -We measured how often the participants 
were taking turns. With two participants, the number of turns one 
can take is dependent on the other participant taking their turns, 
so we defned this measure on a group level. For each difculty 
level and group, the number of turns taken was normalized to the 

3https://furhatrobotics.com/
4https://www.acapela-group.com/ 

duration of that difculty level in minutes. 
Unevenness of participation - Following [37], we obtain the dif-
ference between each individuals’ speech time and the average 
speech time for the group. These diferences are then accumulated 
to measure the group’s deviation from the mean and express how 
uneven the group’s speech was distributed. This measure results in 
values close to 0 if the group distributes speech evenly (which we 
consider a good approximation for balanced participation in the 
game). Higher numbers refect an uneven distribution. We used the 
following formula: 

Õ 
unevenspeech = |�� − � | (2) 

with �� representing the speech of participant � relative to the total 
speech in the pair and � the mean of the pair to compute the un-
evenness of participation. Note that as the �� of the group sum 
to 1 due to the normalization on total speech, the mean always 
results in a value of 0.5. This measure therefore refects how far the 
group deviates from the expected even speech distribution among 
participants (each participant speaks 50% of the time). 

4.4.2 Qestionnaire measures. The following measures were col-
lected in pre- and post experiment questionnaires. 
Personality traits - We selected the dimensions of extroversion 
and agreeableness from the Big Five Inventory [13, 14] as we ex-
pected that these two personality traits would have the highest 
infuence on participation behavior and therefore our task. 
Familiarity - Inspired by Strohkorb Sebo et al. [35], we measured 
self-reported familiarity between participants. To measure this fa-
miliarity, a fve-point Likert scale ranging from "I have never met 
the other participant" to "I am close friends with the other partici-
pant" is used. Further, we asked about connections on social media 
and if they had each other’s phone numbers. The latter two added 
one point each to the scale of familiarity when answered positive. 
Language profciency - The self-reported profciency of Swedish 
was collected on the scale of language levels of the Common Euro-
pean Framework of Reference for Languages [22], with the addition 
of "Native speaker". 
Social presence - In order to investigate how the manipulation 
of the gaze behavior was perceived by participants, we employed 
two scales of the Networked Minds Questionnaire [11] targeted 
at the robot on a Seven-point Likert scale: Co-presence is defned 
as the degree to which the observer believes s/he is not alone and 
attentional allocation describes the amount of attention the user 
allocates to and receives from an interactant. The questionnaire was 
shown to be applicable to human-robot interaction scenarios [16]. 
Willingness to communicate - We used a questionnaire vali-
dated by Ryan [27] to assess the general motivation of a person to 
communicate in a second language.The questionnaire comprises 
8 questions about how likely one would be to communicate in a 
given situation in the given language, i.e., Swedish. The questions 
are answered on a six-point Likert scale. This measure is used to 
evaluate the willingness to practice the second language and will 
be used to evaluate hypothesis H4. 

https://4https://www.acapela-group.com
https://3https://furhatrobotics.com


Figure 4: Overview over the experimental set-up. 

4.5 Experimental procedure 
After giving written consent, participants completed the pre-experiment 
questionnaire comprising items about the demographics of partici-
pants, the two dimensions of personality traits and their profciency 
in Swedish individually. The game instructions were included in the 
consent form (in English) and were verbally repeated (in Swedish) 
by the robot at the beginning of the interaction. Participants were in-
structed that they could both describe the target word. Participants, 
one native Swedish speaker and one Swedish language learner, 
were randomly assigned to one of the two study conditions. After 
flling the pre-questionnaire, they were guided to the meeting room 
with the Furhat robot and asked to take a seat in front of it. The 
chairs were placed with a ~60 degree angle and 2 meters distance 
between each other (see Figure 4). The experimenter explained the 
microphone placement and left the room before Furhat started intro-
ducing itself. Then the robot asked participants to state their name 
and where they came from so that each of them would be aware of 
the possible diference in language skill. After this introduction, the 
robot repeated the game rules and participants interacted with the 
Furhat robot and the game for 15-20 minutes. After completing the 
game with the robot, participants were guided to individual rooms 
again to complete the post-questionnaire, which comprised the 
familiarity between participants, social presence and willingness 
to communicate. Participants were thanked for their participation 
with a voucher (value ~9 USD). 

4.6 Participants 
In total, 72 participants were recruited to interact with the Furhat 
robot in 36 pairs. Participants were recruited from the surrounding 
town and the university campus through fyers, posters, word of 
mouth and online platforms. Recruitment material contained the 
information that participants would interact with another partic-
ipant and the Furhat robot. Participants’ age ranged between 18 
and 67 years (� = 31.43, �� = 10.77) and 35 identifed as female, 
36 as male and 1 did not say. Participants were paired randomly 
according to their role (1 native speaker, 1 language learner). Be-
sides 1 participant who reported a medium familiarity with the 
other participant, participants were unfamiliar with each other. 39 
of the participants had never interacted with a robot before and 19 
reported to interact with robots regularly. 

Level Easy Medium Hard 
M SD M SD M SD 

Experimental 0.30 0.15 0.25 0.11 0.25 0.16 
Control 0.41 0.24 0.35 0.25 0.4 0.30 

Table 1: Means and standard deviations of the unevenness 
of participation for the conditions at each difculty level. 

5 RESULTS 
Of the 36 groups, 9 groups were excluded from analyses either 
because of substantial hardware and software problems (8 groups) 
or misinterpretation of instructions by the participants (1 group). 
Of the remaining 27 groups (54 participants) that were included in 
the analysis, 12 groups interacted in the experimental condition (12 
female, 11 male, 1 rather not say) and 15 in the control condition 
(12 female, 18 male) with an average age of 31.79 years (�� = 11.50) 
and 32.03 years (�� = 10.73), respectively. The profciency level 
of language learners was distributed between Low-intermediate 
(1 learner, 3 learners), Intermediate (5 learners, 4 learners), High-
intermediate (4 learners, 6 learners) and Advanced (2 learners, 2 
learners) for experimental and control condition, respectively. Par-
ticipants played the game and interacted with the Furhat robot for 
an average of 15.8 minutes (�� = 0.37). 

5.1 Unevenness of participation 
To evaluate the impact of our manipulation, we performed a two-
way ANCOVA and examined the efects of condition and level of 
difculty on the unevenness of participation, after controlling for the 
profciency of the language learner. We chose profciency of language 
learners as a covariate because we expected that language learners 
according to their profciency would struggle more in describing the 
words. Level of difculty was chosen as a predictor as we expected 
that language learners would have more difculty describing the 
words with increasing difculty levels. The analysis yielded a main 
efect of condition for the unevenness of participation measure, 
� (1, 72) = 5.717, � = 0.019 whilst controlling for profciency of 
language learners, meaning that the robot’s behavior could infuence 
the participation behavior and lead to less uneven participation in 
the experimental condition (� = 0.27, �� = 0.14) compared to the 
control condition (� = 0.39, �� = 0.26). The efect of the difculty 
level was not signifcant and the covariate language profciency 
was not signifcantly related to the unevenness of participation. 
Figure 5a gives an overview over the unevenness of participation 
between conditions and difculty levels. The means and standard 
deviations for the respective interactions can be found in Table 1. 

5.2 Number of turns taken 
To analyze the efects of our study manipulation on the number of 
turns taken, we performed a two-way ANCOVA in the same way 
and examined the efects of condition and level of difculty on num-
ber of turns taken, after controlling for the profciency of the language 
learner. The covariate, language profciency, was signifcantly re-
lated to number of turns taken, � (3, 72) = 2.819, � = 0.045 indicating 
that the profciency of the language learners infuenced the number 
turns taken in the group. Detailed inspection of the data revealed 
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the progression of the interaction over time in light of the difer-
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per condition. Error bars represent the standard deviation.•p<0.1 

Figure 5: Results from the analysis of unevenness of participation, number of turns and amount of active participation. 

that the higher the profciency of the language learner was, the 
more turns were taken in the group. The main efect of condition 
showed a trend to signifcance, � (1, 72) = 3.500, � = 0.065, indicat-
ing that, as illustrated in Figure 5b, groups showed a trend to taking 
more turns in the experimental condition (� = 2.85, �� = 0.93) 
compared to the control condition (� = 2.38, �� = 1.10). The efect 
of difculty level was not signifcant. 

5.3 Amount of active participation 
A two-way ANCOVA was performed to examine the efects of con-
dition and level of difculty on the amount of active participation, 
after controlling for willingness to communicate, language prof-
ciency, and the personality traits of agreeableness and extroversion. 
As the personality traits of extroversion and agreeableness impact 
how talkative and cooperative a person is [5], we chose these per-
sonality traits as covariates. Further, language profciency afects 
how capable a person is at communicating and the willingness to 
communicate comprises how likely a person is to use the language 
in diferent situations, which led to treating the measures of lan-
guage profciency and willingness to communicate as covariates. As 
we were performing an analysis at the individual level, we added 
"Native speaker" as the highest profciency level, resulting in fve 
diferent profciency levels. 

The covariate, extroversion, was signifcantly related to the 
speech amount, � (1, 151) = 8.192, � = 0.005, indicating after further 
inspection of the data that higher levels of extroversion led to higher 
amounts of participation. There was also a signifcant relation of 
profciency to the speech amount, � (4, 151) = 13.333, � < 0.001 
indicating that the profciency level of the participant infuenced 
the amount of active participation. The predictors condition and 
difculty level were not signifcant. This means that the robot 
behavior did not have a signifcant infuence on the amount of gen-
eral participation (� = 0.3, �� = 0.12 for experimental condition, 
� = 0.33, �� = 0.17 for control condition, see Figure 5b). Each 
participant did not talk for an average 68.5% of the game, which 
included time when the other participant was talking, when the 

robot was trying to guess the word and silence. Often, participants 
were silent as they thought about how to describe the target word 
or waited for the robot to say more guess words. 

5.4 Questionnaire measures 
Additionally, we analyzed the infuence of the robot gaze behavior 
on the perception of social presence. Linear models for co-presence 
and attentional engagement with condition as predictor did not yield 
signifcant results. The scale of co-presence showed a trend towards 
signifcance, � (1, 52) = 3.043, � = 0.087, �2 = 0.055, �2 = 

�� ������ 
0.037, and was generally rated high on the seven-point Likert scale 
with � = 6.472, �� = 0.677 and � = 6.133, �� = 0.734 for the ex-
perimental and control conditions, respectively. The analysis of the 
willingness to communicate comparing pre- and post-experiment 
measures did not yield signifcant results. 

6 DISCUSSION 
The goal of this study was to evaluate whether the gaze behavior of a 
robot could infuence participation levels of human group members 
(prompting them to participate equally) with diferent skills (i.e., 
language profciency: one native speaker and one language learner). 

6.1 Shaping of group interactions 
The results support H1 as participation was signifcantly more bal-
anced in the groups assigned to the experimental condition. This 
indicates that robots can use natural gaze behaviors to help group 
members participate evenly in an activity despite possible difer-
ences in skill level. Figure 5a further shows how the participation 
imbalance is shaped through time based on the condition. Where 
in the control condition the results show a high variation between 
groups, the experimental condition leads to less variation and a 
slight improvement over time despite the increase in difculty. 

Even though our results did not support H2, predicting an in-
creased amount of participation and turn taking, the signifcant 
relation between profciency and amount of participation found in 



the analysis undertaken for H2 can serve as manipulation check. 
Our manipulation (i.e., skill imbalance) was successful as diferent 
skill levels lead to signifcantly diferent amounts of active partici-
pation in the skill-based task. 

Combining the support for H1, indicating more balanced par-
ticipation, with the signifcant relation between profciency and 
amount of participation found when evaluating H2, the results 
indicate that even though the robot could not infuence an indi-
vidual’s amount of participation, it could shape how the group 
was interacting by balancing the expected unevenness of participa-
tion induced by the skill imbalance in the group. With this result, 
we extend prior literature that explored balancing engagement 
among group members through a non-antromorphic robot [37] to 
balancing participation through a conversational robot and gaze 
behaviors. Diferent from prior work, we purposefully manipulated 
the dynamic in the group by inducing skill imbalance. Further, our 
algorithmic approach to gaze behavior is grounded in prior work 
by Mutlu et al. [20, 21] that explored how gaze patterns can be used 
to shape static roles in a conversation. In our work, the robot au-
tonomously observes participation levels in the group and decides 
how to shape the roles accordingly. Thereby, we shed light on how 
a robot could utilize shaping roles dynamically depending on the 
current situation in the group to achieve a more balanced group 
interaction. 

6.2 Perception of the robot 
Additionally, the balancing behavior shown by the robot seemed not 
to be perceived by participants as far as infuencing their perception 
of co-presence or attentional engagement as the results for both 
measures were non-signifcant and hypothesis H3 could not be 
supported. This, on one hand, indicates that the chosen control 
condition ofers a fair comparison to the experimental condition and, 
on the other hand, is in line with prior literature showing that the 
gaze behaviors executed on a robot infuence participants behavior 
in a more subtle way [24, 40]. The willingness to communicate 
among language learners did not change throughout the interaction 
resulting in H4 not being supported. As the short amount of time 
might be a reason for the absent change, future work could explore 
if longer interactions with encouraging and participation balancing 
gaze behaviors could increase the willingness to practice the skill. 

6.3 Implications based on the task 
As a last part of the post-experiment questionnaire, we ofered 
participants to note any comments or observations about the ro-
bot or the interaction. As our task could also be considered as a 
state-of-the art learning problem in natural language processing, 
participants solely focused on the way the robot guessed in the 
open comments and described that it was a really good – sometimes 
maybe too good – guesser. Only one participant in an early pilot 
mentioned the gazing behavior as being encouraging. This indi-
cates that state-of-the-art problems, even when being simplifed for 
the purpose of an HRI study (as many participants indicated that 
the robot might be cheating) ofer an interesting task for studying 
subtle group infuencing behaviors. 

Our task was chosen because it specifcally requires language 
skills and therefore naturally reveals diferences in skill if one of 

the players is not a native speaker. Therefore, the proposed task 
implements our intended manipulation by providing the robot 
with the opportunity to perceive the imbalances in the participants’ 
behaviors and to aim for balancing them. At the same time, the game 
requires a second set of skills regarding the creativity to describe 
words which is independent of language profciency. Therefore, 
we expect that our results can be transferred to situations beyond 
educational tasks in which team success actually requires diverse 
skill sets but the social structure or individual diferences can hinder 
participation of some members. The exploration of those situations 
is left to future work. 

6.4 Limitations 
The robot’s behavior in both conditions was dependent on the 
automatic voice activation captured by the headset microphones 
worn by each participant. We also based most of our analysis on 
this automatic collection. As these microphones might catch back-
ground noise, these measures are expected to have inaccuracies. 
Nonetheless, this noise and, therefore, the inaccuracies are expected 
to be present in both conditions in the same way. Further, our study 
was conducted in a group with two participants with diferent skill 
levels and one robot. Future work has to explore if the results could 
be extended to groups with more participants or more robots. Ad-
ditionally, it remains open for future work if the explored robot 
behavior could be extended to groups with other kinds of imbal-
ances in group dynamics (e.g., based on personality traits). 

7 CONCLUSION 
Prior work has shown that robots can use gaze to infuence groups. 
We extend these prior works by showing the applicability of human-
like robot gaze behaviors and their infuence on group constellations 
with skill imbalance and therefore specifc need for mediation. We 
developed an autonomous robot gaze behavior that could balance 
group members’ participation by adapting to the real-time per-
ceived participation. While personality and language profciency 
had a strong infuence on the amount of participation, the robot 
could shape how participants interacted with each other by balanc-
ing participation levels. Our results ofer possible applications to 
robot facilitators for meetings or educational activities in which dif-
ferent skill levels are common, to ensure even participation through 
the robot’s gaze behavior. 
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